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■ Abstract This paper reviews literature, current concepts and approaches in com-
putational anatomy (CA). The model of CA is a Grenander deformable template, an
orbit generated from a template under groups of diffeomorphisms. The metric space
of all anatomical images is constructed from the geodesic connecting one anatomical
structure to another in the orbit. The variational problems specifying these metrics
are reviewed along with their associated Euler-Lagrange equations. The Euler equa-
tions of motion derived by Arnold for the geodesics in the group of divergence-free
volume-preserving diffeomorphisms of incompressible fluids are generalized for the
larger group of diffeomorphisms used in CA with nonconstant Jacobians. Metrics that
accommodate photometric variation are described extending the anatomical model to
incorporate the construction of neoplasm. Metrics on landmarked shapes are reviewed
as well as Joshi’s diffeomorphism metrics, Bookstein’s thin-plate spline approximate-
metrics, and Kendall’s affine invariant metrics. We conclude by showing recent ex-
perimental results from the Toga & Thompson group in growth, the Van Essen group
in macaque and human cortex mapping, and the Csernansky group in hippocampus
mapping for neuropsychiatric studies in aging and schizophrenia.
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INTRODUCTION

Revolutionary advances in the development of digital imaging modalities com-
bined with advances in digital computation are enabling researchers to make ma-
jor advances in the precise study of the awesome biological variability of human
anatomy. This is emerging as the exciting new field of computational anatomy
(CA) (1, 2). CA, as first defined in Reference (2), has three principal aspects:
(a) automated construction of anatomical manifolds, points, curves, surfaces, and
subvolumes; (b) comparison of these manifolds; and (c) the statistical codification
of the variability of anatomy via probability measures allowing for inference and
hypothesis testing of disease states. This review will focus on aspects (b) and (c).
Although the study of structural variability of such manifolds can certainly be
traced back to the beginnings of modern science, in his influential treatise “On
Growth and Form” in 1917, D’Arcy Thompson had the clearest vision of what lay
ahead, namely:

In a very large part of morphology, our essential task lies in the comparison of
related forms rather than in the precise definition of each; and thedeformation
of a complicated figure may be a phenomenon easy of comprehension, though
the figure itself may have to be left unanalyzed and undefined. This process
of comparison, of recognizing in one form a definite permutation ordeforma-
tion of another, apart altogether from a precise and adequate understanding
of the original ‘type’ or standard of comparison, lies within the immediate
province of mathematics and finds its solution in the elementary use of a certain
method of the mathematician. This method is the Method of Coordinates, on
which is based the Theory of Transformations.
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The study of shape and structure has certainly progressed a long way; Thomp-
son’s vision is precisely the mathematical structure we term anatomy in CA (1, 2),
a Grenander deformable template (3) in which the space of anatomical imagery is
an orbit under groups of transformations. There are two types of transformations,
the first of the geometric or shape type studied through mappings of the coordi-
nate systems of the anatomies. Variation in the image space is accomodated by
introducing groups of diffeomorphic transformations carrying individual elements
from one to another. The diffeomorphic transformations (invertible differentiable
mappings with differentiable inverse) fill out the anatomy. The second transforma-
tion type is of the photometric values accomodating the appearance or creation of
new structures. Equally exciting is that in recent years, metric space structures have
been associated with the orbits of anatomical imagery. The metric is calculated
via equations of motion describing the geodesic connection between the elements.
Thus the original vision of Grenander’s metric pattern theory is in large part being
carried out in CA: Metric distances between patterned shapes and structures are
measured via distances between the mappings.

In this paper, we first describe some of the recent work in the mapping litera-
ture of computational neuro-anatomy. We then review the basic model of CA as
a Grenander deformable template, an orbit generated under groups of diffeomor-
phisms. Next, we define metrics between anatomies associated with shortest length
paths connecting one anatomical mapping to another in the orbit, measuring both
geometric and photometric variation. The variational problems specifying these
metrics are reviewed along with the associated Euler-Lagrange equations. Interest-
ingly, the Euler-Lagrange equations of motion for the geodesics characterizing the
metric generalize the Euler equations of Arnold (4) from flows through the group
of volume-preserving diffeomorphisms to those appropriate for the more general
space of non-volume-preserving diffeomorphisms appropriate for the study of
general shapes. In this context, metrics on landmarked shapes are reviewed. We
conclude by showing results on the study of growth and development, human and
macaque cortex, and computational neuropsychiatry in aging and schizophrenia.

RECENT PROGRESS IN CA

The area of mathematical codification of biological and anatomical structure has
been exploding over the past several decades. Digital electronic databases are cur-
rently available (5), especially for colocalization of volume datasets such as those
encountered with PET/SPECT, CT, and MRI (6–14). Suitable atlases supporting
neuromorphometric analyses (15) are now becoming available with the advent of
large volumetric image data sets with large numbers of voxel samples. Complemen-
tary to the atlas development work, there has been great progress in the application
of D’Arcy Thompson’s transformations in cataloguing and in studying shapes. The
earliest landmark and volume mapping work of biological coordinates, pioneered
in the early 1980s by Bookstein (16) and Bajcsy (7), continues today in many
groups including the Ayache-Gourdon-Thirion group (17–22), the Bajcsy-Gee
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group (7, 8, 23–27), the Bookstein group (16, 28–33), the Dale-Fischl group (34–
37), the Duncan-Staib group (38–44), the Evans group (45–53), the Friston group
(48, 54, 55), our own Grenander-Miller-Trouv´e-Younes group (1, 2, 56–76, 76a),
the Kikinis-Jolesz group (77–82), the Davatzikos-Prince group (83–92), the Sapiro
group (92a–92c), the Hurdal-Sumners group (93), the Mazziotta-Toga group (11,
94–98), the van Essen group (66, 99–101), and the Wandell group (92c, 101a,
101b), to name a few. Many of these approaches have studied higher dimensional
transformations and mappings. Concurrently, efforts have proceeded along the
lines of establishing the power of these approaches in lower and moderate dimen-
sional settings in which the image structures being matched are more globally
defined, with the variability of global structures being the primary goal of success-
ful registration. Complementary to the volume work, there has been great progress
on anatomical mapping via subsets of landmarked points. For such approaches,
predefined subsets of the anatomy provide registration information and become the
principal features about which variational studies between the various coordinate
systems proceed.

Structured approaches via deformable templates and contour and surface mod-
els studying the variations of substructures via boundaries and surfaces via vec-
tor field transformations have emerged in many of these efforts. Detailed gross
macroscopic studies of cortical folding and localization of functional and anatom-
ical boundaries are emerging in both macaque and human brains, with automated
methods for generating the sulcus and gyral principle curves becoming available.
Active shape methods have presented significant advances as well for studying
anatomical shapes, including the active contour and surface deformation work
by Terzopoulos (102–105), Pentland & Sclaroff (106–108), and Cootes & Taylor
(109–111).

Because of the sheer complexity of human neuroanatomy, in particular the
human brain, the study of brain geometry has emerged as the study of the sub-
manifolds of anatomical significance including its landmarks, curves, surfaces,
and subvolumes all taken together forming the complete volume. The complete
methodology combines mappings that carry all of the submanifolds of points,
curves, surfaces, and subvolumes together. This is precisely why in our own group
the fundamental transformation group that we have studied are spaces of diffeo-
morphisms, as they carry these submanifolds consistently. The transformations are
constrained to be 1-1 and onto, and differentiable with differentiable inverse, so
that connected sets remain connected, submanifolds such as surfaces are mapped
as surfaces, and the global relationships between structures are maintained.

THE METRIC SPACE OF ANATOMICAL IMAGES

Geodesics Connecting Geometric Transformation
via Diffeomorphisms

The mappings of the geometric or shape type are exclusively invertible, 1-1, onto
continuous mappings with continuous inverses that are differentiable, henceforth
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called diffeomorphisms. These transformations form a group, denoted byG with
elementsg∈G, and the coordinates that they transform are subsets ofX. Generally,
the low-dimensional transformations—rotation, scale, and skew—are studied in
tandem with the infinite dimensional local diffeomorphic transformations. As orig-
inally proposed by Christensen et al. (59), one models the transformations as arising
from an evolution in time, or a flowg(t), t ∈ [0, 1] corresponding to the transport
equations from continuum mechanics [see Dupuis (65) and Trouv´e (60, 76) for
their technical development]. The forward and inverse maps are uniquely defined
according tog−1(g(x, t), t)= x for all t ∈ [0, 1], x∈ X, implying the equations of
flow are linked according to

∂

∂t
g(x, t) = v(g(x, t), t),

∂

∂t
g−1(y, t) = −Dg−1(y, t)v(y, t),

g(0) = g−1(0)= id, (1)

id the identity map, the Jacobian operator giving thed× d matrix forRd-valued
functions (Df )i j = ∂ fi

∂xj
and thed× 1 row vectorDf = ( ∂ f

∂x1
, . . . ,

∂ f
∂xd

) for scalar
valued functions defined ond–dimensional domain. The flow equations are depic-
ted in panel 1 of Figure 1.

Definition 3.1 Define the group of transformationsG to be diffeomorphisms
g(1)∈G : x 7→ g(x, 1)∈ X, 1-1,onto, with continuous inverse and differentiable
solutions of Equation 1, withv(t), t ∈ [0, 1] sufficiently smooth and vanishing at
the boundary of X for each t to generate smooth solutions g(1),g−1(1) (60, 65, 76).

One principal aspect of CA is to define the metric distance between anatomies
through the mappings between them. We follow the approach taken in Refer-
ences (60, 68, 71, 76); embed the diffeomorphisms in a Riemannian space and
define distance between them via the geodesic length of the flowsg(·): [0, 1]→ G

Figure 1 Panel 1 (left) shows the Lagrangian description of
the flow; panel 2 (right) shows the variation of the group flow
elementg(·) by η(·).
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which connects them. The geodesic length is defined through the square root
of the energy of transformation of the path,E(g)= ∫ 1

0 ‖v(t)‖2Ldt, v(t) = ∂g/∂t
with ‖·‖L a proper norm on the vector fields onX (i.e., a Sobolev space with
L a differential operator). Investigators have used linear differential operatorsL
operating on the vector fields to enforce smoothness on the maps and to define
the finite norm, generally differentiating only in space and constructed from the
Laplacian and its powers.L is ad× d matrix of differential operatorsL= (Li j ) on
Rd valued vector fields of the form (Lv) j =

∑d
i=1 Li j vi , j = 1, . . . ,d inducing

a finite norm constraint at each timet. Denote the norm-squared energy density
according to

Ev(t) =
∫

X
Ev(x, t) dx = ‖v(t)‖2L = 〈Lv(·, t), Lv(·, t)〉 <∞, t ∈ [0, 1], (2)

so that the solutions of Equation 1 are well defined. The energy density has been de-
fined through powers of the Laplacian for the classic thin-plate splines (16, 29, 30)
and the Cauchy-Navier operator for 3-dimensional elasticity (25, 56, 59, 97). Dif-
ferential operators with sufficient derivatives and proper boundary conditions
insure the existence of solutions of the transport equation in the space of dif-
feomorphic flows (60, 65, 76).

Now the metric between transformationsg0, g1∈G is defined via the length of
the shortest pathg(t), t ∈ [0, 1] with the boundary conditionsg(0)= g0, g(1)= g1.
A crucial property of the metricρG : G × G → R+ is that it is invariant toG, so
thatρG(g0, g1) = ρG(g · g0, g · g1) for g ∈G, whereg′ · g= g◦ g′.

Theorem 3.1The functionρG(·, ·) : G × G → R+ between elements g0, g1∈G
defined as

ρG(g0, g1)2 = inf
g(·): ∂

∂t g−1(t)=−Dg−1(t)v(t),g(0)=g0,g(1)=g1

∫ 1

0
Ev(t) dt, (3)

is a left-invariant metric distance onG. The geodesics satisfy the Euler-Lagrange
equations(proof in Appendix):

∂

∂t
∇vEv(·, t)+ (Dv(·, t))t∇vEv(·, t)
+ (D∇vEv(·, t))v(·, t)+ div v(·, t)∇vEv(·, t) = 0, (4)

where∇ is the gradient operator delivering a vector, ∇vEv(t)= 2L†Lv(t) with the
adjoint defined as〈Lf, g〉= 〈 f, L†g〉, div v=6 i

∂v
∂xi

the divergence operator.

Equation 4 was first derived by Mumford (112) who also showed that it reduces to
Burger’s equation in one-dimension forL= id,∇vEv = 2v. Mumford used a varia-
tional argument for calculating Equation 4 perturbing the geodesic byη(t), t∈ [0, 1]
leaving the endpoints unchanged (see panel 2 of Figure 1 and appendix). Equation 4
generalizes Arnold’s derivation for incompressible flow [Equation 1 of (4)]. The
left-invariance follows from that fact that translation by another group element
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leaves the distance unchanged becauseg(·) satisfies∂g(·,t)
∂t = v(g(·, t), t), g(0) =

id, g(1)= g1 implyingg(0)◦ h= h, g(1)= g1◦ h, with an identical velocity field so
that ∂g(h(x),t)

∂t = v(g(h(x), t), t), g(0)= h, g(1)=g1(h). The distancesρG(id, g) =
ρG(h, g◦h) are equal for allh ∈G. As pointed out by Ratnanather and Baigent (per-
sonal communication), the left-invariance of the metric allows the Euler-Lagrange
equations to be recast in the Euler-Poincar´e form using Marsden’s reduction theory
(114).

Inducing the Metric Space on Anatomical Images

The group of geometric transformations are not directly observable. Rather images
are observed via sensors which measure physical properties of the tissues. Carrying
out Grenander’s metric pattern theory program, the space or orbit of anatomical
imagesI ∈ I must be made into a metric space. The metric distance between
anatomical imageryI ∈ I is constructed from distances between the mappings
g ∈G. First, the anatomical orbit of all images is defined.

Definition 3.2The mathematical anatomy are functions I∈ I, I : x ∈ X 7→I(x), an
orbit under the geometric transformations:I ={I ′:I ′(·)= I (g(·)), I ∈ I, g∈G}.
This is a group action (113) onI with g · I= I ◦ gand group productg′ · g(·)= g◦
g′(·)= g(g′(·)), which defines the equivalence relationI1 ∼ I2 if ∃g∈G such that
I1(·)= I2(g(·)), dividing I into disjoint orbits.

Now, there can be many high dimensional maps connectingI, I ′. For the in-
duced functionρ on I to be a metric it is required thatρ is invariant to this
nonidentifiability; this it inherits from the left-invariance property ofρG.

Theorem 3.2The functionρ(·, ·): I × I→R+ between elements I, I ′ ∈ I de-
fined as

ρ(I , I ′)2 = inf
g: ∂
∂t g−1(t)=−Dg−1(t)v(t),I (g−1(·,1))=I ′(·),g−1(0)=id

∫ 1

0
Ev(t) dt (5)

is a metric distance onI satisfying symmetry and the triangle inequality.

The metric property was proved in References (60, 71, 76). The property suf-
ficient for ρ to be a metric is the left-invariance ofρ [in fact, all that is required
is it be invariant to the stabilizer; see (71)]. The fact thatρG is left-invariant toG
implies that for allg∈G, ρ(I ◦ g, I ′ ◦ g)= ρ(I, I ′). This also implies any element
in the orbit can be taken as the template; all elements are equally good.

Expanding the Metric Space to Incorporate
Photometric Variation

Thus far, the metric depends only on the geometric transformations of the back-
ground spaceX. Extend the construction of the metric to be image dependent fol-
lowing Reference (71) by defining the group action to operate on the geometry and
photometric values allowing for the creation of new matter. For this, we introduce



19 Jun 2002 9:23 AR AR164-16.tex AR164-16.sgm LaTeX2e(2002/01/18)P1: IBC

382 MILLER ¥ TROUVÉ ¥ YOUNES

an explicit dependence on time in the evolution of the image to accomodate pho-
tometric variation via material transport.

Theorem 3.3Defining the image evolution in the orbit as J(y, t)= I(g−1(y, t), t),
∂
∂t g−1(y, t) = −Dg−1(y, t)v(y, t), then the functionρ(·, ·): I×I→R+ between
elements I, I ′ ∈ I defined as

ρ(I , I ′)2 = inf
v(·),I (·):J(0)=I ,J(1)=I ′

∫ 1

0

(
‖v(t)‖2L +

∥∥∥∥ ∂∂t
J(t)+∇ Jt (t)v(t)

∥∥∥∥2
)

dt (6)

is a metric [ proven in (71)] satisfying symmetry and the triangle inequality.
Defining

∇vE(y, t) = 2L†Lv(y, t)+ 2

(
∂

∂t
J(y, t)+∇ Jt (y, t)v(y, t)

)
∇ J(y, t), (7)

then the Euler Equation 4 holds with boundary term∇v E (·, 1)= 0 with the
geodesics for photometric evolution satisfying(proof in Appendix):

L†Lv(y, t)+
(
∂

∂t
J(·, t)+∇ Jt (·, t)v(·, t)

)
∇ J(·, t) = 0 , (8)

∂

∂t

(
∂ J(·, t)
∂t

+∇ Jt (·, t)v(·, t)
)

+ div

(
∂ J(·, t)
∂t

v(·, t)+ (∇ Jt (·, t)v(·, t))v(·, t)
)
= 0. (9)

EULER-LAGRANGE EQUATIONS FOR INEXACT
IMAGE MATCHING AND GROWTH

A central problem in CA is essentially diffeomorphic image interpolation, i.e., to
infer the geometric image evolution that connects two elementsI0, I1 ∈ I under
pure geometric evolution. For this a function of the path is defined; call itI0(g−1(t)),
t ∈ [0, 1]. The goal is to construct the shortest length curveg(t), t ∈ [0, 1] which
minimizes the target norm squared‖I0(g−1(1))− I1‖2, as studied in Dupuis et al.
(65). This is of course inexact matching, since there is a balance between metric
length of the path and target correspondence. We can view the image evolution
defined by the geodesic as an interpolation between images via the geodesic.
Because of the introduction of the free boundary, there is a boundary term which
is introduced.

Theorem 4.1 (Inexact Image Matching)The minimizer

inf
g(·): ∂

∂t g−1(t)=−Dg−1(t)v(t),g(0)=g0

∫ 1

0
Ev(t)dt + ‖I1− I0(g−1(1))‖2 (10)
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satisfies the Euler-Lagrange Equation 4 with boundary term(proof in Appendix):

∇vEv(·, 1)+ 2(I1(·)− I0(g−1(·, 1)))D(I0(g−1(·, 1)))t = 0, (11)

where D(I0 (g−1(·, t))) =∇ I t
0(g−1(·, t)) Dg−1(·, t).

The above has no real-time variable, only connection or interpolation between
two images via the geodesic. Now assume that the observables define a running
norm squared,‖I1(t)− I0(g−1(t))‖2, t ∈ [0, 1], corresponding to a time sequence
that might occur during space-time growth modelling. Then the problem is akin
to finding the trajectory of diffeomorphisms creating observable time flow.

Theorem 4.2 (Space-Time Growth)The minimizer

inf
g: ∂
∂t g−1(t)=−Dg−1(t)v(t),g(0)=id,t ∈ [0,1]

∫ 1

0
Ev(t)dt +

∫ 1

0
‖I1(t)− I0(g−1(t))‖2 dt (12)

satisfies the Euler-Lagrange equation(proof in Appendix):

∂

∂t
∇vEv(·, t)+ (Dv(·, t))t∇vEv(·, t)+ (D∇vEv(·, t))v(·, t)
+ div v(·, t)∇vEv(·, t) = 2(I1(·, t)− I0(g−1(·, t)))D(I0(g−1(·, t)))t . (13)

COMPUTATIONAL IMAGE MATCHING

Beg’s Geometric Transformations via Inexact Matching

In this section, we examine the results of solving the Euler-Lagrange equations for
generating the geodesics. Faisal Beg solves inexact image matching (Equation 10)
via variations with respect to the velocity field exploiting the vector space structure.

Algorithm 5.1 Fixed points of the following algorithm(proof in supplemental ma-
terial link in the online version of this chapter or at http://www.annualreviews.org)
satisfy Equations 4 and 11. Initializevold= 0, choose constantε, then for all t ∈
[0, 1],

Step 1:
∂

∂t
gnew(t) = vold(gnew(t), t),

∂

∂t
g−1new(t) = −Dg−1new(t)vold(t),

χnew(t) = gnew(g−1new(t), 1),

Step 2: Computevnew(t) = vold(t)− ε∇vE(t), setvold← vnew, return to Step 1

(14)

where

∇vE(t) = vold(t)+ (L†L)−1
(|Dχnew(t)|

×D(I0(g−1new(t)))t (I1(χnew(t)) −I0(g−1new(t)))
)
. (15)
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Here (L†L)−1 f=Kf where K is the Green’s kernel. The space-time solution of
Equation 13 has gradient

∇vE(t) = vold(t)+ (L†L)−1

(∫ 1

t
|Dχnew(t ; τ )|D(I0(g−1new(t)))t

× (I1(χnew(t ; τ ), τ )− I0(g−1new(t))) dτ

)
(16)

whereχ (t ; τ ) = g(g−1(t), τ )

(for proof see supplemental material link in the online version of this chapter or
at http://www.annualreviews.org). Notice the smoothing nature of the space-time
solution.

Beg’s gradient descent algorithm discretizes Equation 15. At the fixed point, the
discrete version of the Euler-Lagrange equation is satisfied. Except where noted,
the operator is chosen to beL=−50∇2+ 0.1 id and the flow timet∈ [0, 1] was dis-
cretized into 20 timesteps. All geodesic solutions correspond to 10,000 iterations of
the gradient algorithm. Results of the mapping of multiple shapes including the for-
ward and inverse diffeomorphic matches for large deformation are shown in Figure
2. Figure 3 shows the results of maps on the geodesic of the flows for the1

2C shape to
theC shape (with 30 timesteps) and Heart1 to Heart2 experiments. Figure 4 shows
results from the Macaque brain and hippocampus section mapping experiments.

The Psychophysics of the Metric

Shown in Figure 5 are examples of metric computations in 2-D on high resolution
electron-micrographs. The mitochondria are shown in increasing order of their
metric distance. Here,L is−50∇ 2+ id. Notice how increasing the distance in the
metric corresponds closely to one’s intuitive feel of closeness and similarity.

Space-Time Flows

The UCLA group of Thompson & Toga (97) has examined the instantaneous
version of the growth problem in which, at each time instant, the deformation field
is estimated independent of previous time. Figure 6 shows maps of growth in the
brains of children, showing growth rates corresponding to the corpus callosum.
The maps are made based on scanning the same child at age 7 and 11, and another
child at age 8 and 12. Pairs of 3-D scans acquired several years apart are first
rigidly registered. A 3-D deformation vector field based onL = −∇2 + c∇∇ t

is constructed at each time point with two components of the deformation field
applied to the regular grid overlaid on the anatomy. The Jacobian determinant,
whose values are color coded on the deformations shows the local growth rate (red
colors, rapid growth).

Photometric Matching with Tumors

We examine photometric variation withL=∇2= ∂2

∂x2
1
+ ∂2

∂x2
2

and ‖v(t)‖2L = 1
α∑2

i=1‖∇2vi (t)‖2 from Equation 6, whereα is a positive parameter. Comparison
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Figure 2 Row 1 showsI0 and row 2 showsI0 (g−1(·, 1)); row 3 showsI1, and row 4 showsI1

(g(·, 1)). Column 1 shows a diagonal shift, column 2 shows a dilation and contraction (scale),
column 3 shows a rotational motion (the1

2C shape experiment), column 4 shows a section
of Heart 1 matched to corresponding section of Heart 2, and columns 5 and 6 show sections
of hippocampus in a young control to that with schizophrenia and with Alzheimer’s. Shown
in the bottom row are the properties ofg−1

1
2 C

(·, 1) (panel 1), the deformation of the underlying
coordinate space of the template,g1

2 C(·, 1) (panel 2), the deformation of the underlying
coordinate space of the target, the Jacobian of the forward mapg(·, 1) (panel 3), and the
norm of the velocity field along the flow for 1, 100, 1,000, 5,000, 10,000 iterations of the
algorithm (panel 4). Notice the geodesic property at the convergence point corresponding to
the constant norm‖v(t)‖= constant.

between two imagesI and I ′ is performed by minimizing over all paths satisfy-
ing v(x, t)= 0, t∈ [0, 1], x∈ ∂X, andJ(0)= I, J(1)= I ′ as in Reference (71); see
algorithm in Supplemental Material link in the online version of this chapter
or at http://www.annualreviews.org. Figure 7 shows results demonstrating the
transformation processI(g−1(·, t), t) as functions of timet ∈ [0, 1] between two
imagesI andI ′. The top two rows show the process of either creating photometric
or geometric change. Depending on the choice of the parameterα, the process
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Figure 3 Rows 1 and 3 show images along the geodesic at time points 0 (panel 1),t3 (panel
2), t9 (panel 3),t12 (panel 4),t15 (panel 5), andt18 (panel 6). The metric distance from the start
point is shown below each panel. Rows 2 and 4 show the vector fields at three different time
points on the geodesic,v(·, t0), v(·, t10), v(·, t19). The heart data (rows 3, 4) were taken from
the laboratory of Dr. Raimond Winslow.

allows for the creation of pixel luminance yielding a transformation that looks like
fading with almost no geometric deformation at all (α small), or the process will
introduce a large deformation of the grid resembling an explosion (α large). The
bottom row of Figure 7 is the result of matching sections of a brain with a tumor
shape. The rightmost panel shows the centered black spot.

FINITE DIMENSIONAL SHAPE SPACES

A special class of images corresponding to finite dimensional landmark shapes
has been extensively studied by Bookstein (16, 29, 30) and Kendall (115) and
colleagues. Fix an integer number of landmarksN> 0 and denote byIN= (Rd)N

the space of landmarks parameterizing the finiteN-shapes through the points that
identify themIN= (x1, . . ., xN), I ′N = (x′1, . . ., x′N). The natural distances between
shapesρ: IN × IN→ R+ are the lengths the paths through which the points must
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Figure 4 Row 1 shows the maps along the geodesic connecting Macaque1 to Macaque2;
row 2 shows the velocity fields along the geodesic for the 2-D matching experiments. The
data were taken from the laboratory of Dr. David Van Essen. Rows 3 and 4 show similar
results for the hippocampus mappings along the geodesic connecting the young control to
the patient with Alzheimer’s disease. Row 4 shows velocity fields along the geodesic for the
2-D matching experiments. The data were taken form the laboratory of Dr. John Csernansky.

travel to correspond. Distance is measured through a quadratic form determining
the length of the tangent elements as the particles flow.

Definition 6.1For N-shapes IN, I ′N with trajectories g(t)= (g(x1, t), . . ., g(xN, t)), in

Rd, g(xi, 0)= xi, g(xi, 1)= x′i of length
∫ 1

0‖ ∂g(t)
∂t ‖2Q(g(t)) dt, then the geodesic dis-

tance is

ρ(IN, I ′N)2= inf
g(·):g(xn,0)=xn,g(xn,1)=x′n

∫ 1

0

N∑
i j=1

v(g(xi , t), t)
t Q(g(t))i j v(g(xj, t), t) dt,

(17)

where Q(g(t)) is an Nd×Nd positive definite matrix with d× d blocks Q(g(t))i j

with Nd×Nd inverse K(g(t))= (Q(g(t)))−1, with d× d blocks(K(g(t)))i j .
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Figure 5 The top row shows the mitochondria subshapes for matching from the
laboratory of Dr. Jeffrey Saffitz. Rows 2, 3, 4, and 5 give below each panel the metric
for the geodesic distances to indicate which shapes are close and far. Notice how in-
creasing the distance in the metric corresponds to closeness and similarity.
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Figure 7 The first row corresponds to smallα; the second row corresponds to large
α. The left column shows start and end imagesI0, I1; the middle column shows the
geometric deformations on the grid determined by mappingg−1(x, 1); the right column
shows the image value change. The last row shows a time series of geometric and
photometric transformations in generation of tumor in brain tissue. Results from Miller
& Younes (71).

Diffeomorphic Landmark Matching in Euclidean
Space and the Sphere

MATCHING ON THE CUBE [0, 1]d The Joshi metric for diffeomorphic matching of
landmarks turns out to reduce to the dense matching diffeomorphism only involving
the paths of the landmarks. These are the Joshi diffeomorphism splines as first
shown in (69). Assume the the quadratic form‖v(t)‖2L admitsd× d Green’s kernel
K so that for allf in the space‖ f ‖Lfinite,

〈K (x, ·), f 〉L =
∫

X
L†LK(x, y) f (y) dy= f (x). (18)

Theorem 6.1 (Joshi (69))For N-shapes IN, I ′N ∈RdN, ∂
∂t g(x, t)= v(g(x, t), t),

g(xn, 0)= xn, g(xn, 1)= x′n the optimizing diffeomorphism satisfying

inf
v:R1

0‖v(·,t)‖2dt<∞

∫ 1

0
‖v(·, t)‖2Ldt +

N∑
n=1

‖yn − g(xn, 1)‖2Rd

σ 2
, (19)
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with Nd×Nd Green’s kernel K(g(t)), inverse Q(g(t))=K−1(g(t)) where

K (g(t)) =

 K (g(x1, t), g(x1, t)) · · · K (g(x1, t), g(xN, t))
...

...
...

K (g(xN, t), g(x1, t)) · · · K (g(xN, t), g(xN, t))


is given by

v(·, t) =
N∑

i=1

K (g(xi , t), ·)
N∑

n=1

Q(g(t))in ġ(xn, t)

and

g(xn, ·)n = 1, . . . , N = argmin
ġ(xn, ·)n = 1, . . . , N

∫ 1

0

∑
i j

ġ(xi , t)
t Q(g(t))i j ġ(xj , t) dt

+
N∑

n=1

‖yn − g(xn, 1)‖2Rd

σ 2

(proof in supplemental material link in the online version of this chapter or at
http://www.annualreviews.org).

Joshi (69) examines the matching problem in Euclidean subsets ofRn follow-
ing the gradient of the cost in the planen= 2, and cubic volumesn= 3 choos-
ing operators constructed from the LaplacianL= diag(−∇2+ cI), studying both
exact and inexact landmark matching. InR3, the 3× 3 diagonal blocksK(x, y)
= diag[κe−

√
1
c ‖y−x‖] with κ normalizingκ

∫
e−
√

1
c ‖y−x‖ dy = 1. The top row of

Figure 8 shows the matching for the “OVAL” and “S” (panels 1 and 2) from Joshi’s
gradient algorithm (69). The corresponding points were used as landmarks with
variancesσ 2= 0.1 (panel 3) andσ 2= 10 (panel 4).

Matching on the SphereS2: Investigators in CA, beginning with the earliest work
of Dale & Sereno (34), have introduced transformations on the sphere to study the
neocortex. Bakircioglu et al. (70) constructed diffeomorphisms on the sphere via
maps that are constrained to satisfy flow equations∂

∂t g(x, t) = v(g(x, t), t), g
(x, 0)= x, t ∈ [0, 1], x ∈ S2, v(x, t)= ∑2

i=1 νi (x, t) Ei(x); whereE1(·), E2(·) are
coordinate frames on the sphere from stereographic projection.

For smoothing, the spherical Laplacian operator is used (L= ∂2

∂φ2 + cotφ ∂
∂φ
+

1
sin2φ

∂2

∂θ2 ), which has as eigenfunctions the spherical harmonics (116) inducing the
2N× 2N diagonal block matrix

K (g(t))i j = diag

[ ∞∑
n=1

1

n2(n+ 1)2
2n+ 1

4π
Pn(cos(9(g(xi , t), g(xj , t)))

]
,

with the spherical solid angle9(·, ·) and Legendre polynomialsPn(x)= 1
2nn!

dn

dxn

(x2− 1)n.
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Given N-landmarksxn, yn, n= 1, . . ., N ⊂ S2, with distance on the sphere
9 and coordinate frames on the sphereE1, E2, the optimal diffeomorphism sat-
isfying ∂

∂t g(·, t) = ∑2
i=1 νi (g(·, t), t)Ei (g(·, t)), g(x, 0)= x, x∈S2, minimizing∑2

i=1

∫
S2× [0,1] ∇2|ν i(x(θ , ψ), t)|2 sinψdψdθ is given by

inf
g:ġ(t)=P2

i=1νi (g(t),t)Ei (g(t))

∫ 1

0

∑
i j

ν(xi , t)
t (K (g(t))−1)i j ν(xj , t) dt

+
N∑

n=1

92(yn, g(xn, 1))

σ 2
n

.

The results of computations of spherical deformations are shown in the bottom
row of Figure 8.

Mapping the Cerebral Cortex

To understand individual variations in the cortical topography, the Van Essen group
has been using large deformations to establish correspondences between the cor-
tical maps of various individual cortical surfaces (66, 100, 101). The left column
of Figure 9 shows a surface-based atlas of the macaque visual cortex. The top
panel shows the macaque surface in 3-D and the bottom panel shows the flat
atlas. The right column of Figure 9 shows results from flat mapping transforma-
tions of the macaque. The top row of Figure 10 shows an interspecies compar-
ison via cortical surface deformation between the macaque and visible human
(100).

Landmark Matching Via Other Metric Distances

EUCLIDEAN DISTANCE AND BOOKSTEIN THIN-PLATE SPLINE DISTANCE Euclidean
distance betweenN-shapes inRd measures distance according to straight line
paths between the objects. Choosing the quadratic form to be a constant indepen-
dent of the path, the metric distance becomesρ(IN, I ′N)2= ∑N

i j=1 (xi−x′i )
t(K−1)i j

(xj−x′j ).
Bookstein’s (16, 29, 30) thin-plate spline landmark matching measure approx-

imates the tangent flow of the landmark trajectories by the tangent at the origin.
This is clearly not symmetric, nor does it satisfy the triangle inequality. However,
for small deformations, this is a powerful methodology that approximates the dif-
feomorphic flow metric of Joshi in the tangent space by the metric at the origin.
Assume Green’s operator as thedN× dN block matrixK(g(0)) evaluated at the
origin of the flow withd× d blocksK(g(0))i j . The approximate distance reduces
to ρ̃(IN, I ′N)2 =∑N

i j=1(xi − x′i )
t (K (g(0))−1)i j (xj − x′j ).

KENDALL’S SIMILITUDE INVARIANT DISTANCE Kendall (115) defines the distance
between sets of N-shapes invariant to uniform scale, rotation, and translation. De-
fine the affine similitudes to be matricesA= sO, s∈ (0,∞), O∈SO(n), with their
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action on the shapes, the scale-rotation-translation of each point of the shape:
AI+ a= (Ax1+ a, . . ., AxN+ a)t. The Kendall invariant distance requires the ma-
tricesK(IN) have the property that, for all (A, a), K(AIN+ a)=AK(IN)At.

Theorem 6.2 [Kendall (115)]Defining the mean shape position asḡ(t) = 1
N

∑N
n=1

g(xn, t), with K(g(t))= σ 2(g(t))id, where id is the Nd×Nd identity matrix and
σ 2(g(t))= ∑N

i=1‖g(xi, t) − ḡ(t)‖2, with ρ0 a distance onR+×Rd, the geodesic

connecting IN, I ′N minimizing
∑N

i=1

∫ 1
0

1
σ 2(g(t))‖ ∂g

∂t (xi , t)‖2 dt has distance(proof
in Appendix)

ρ(IN, I ′N)2 = ρ0((σ (g(0)), ḡ(0)), (σ (g(1)), ḡ(1)))2

+
(

arccos
N∑

i=1

〈
g(xi , 0)− ḡ(0)

σ (g(0))
,

g(xi , 1)− ḡ(1)

σ (g(1))

〉)2

(20)

with Kendall’s similitude invariant distance given by

ρ̃(IN, I ′N) = inf{ρ(AIN + a, I ′N),A similitude,a ∈ Rd}. (21)

Kendall’s distance ˜ρ in Equation 21 requires computing the minimum ofρ(sOIN+
a, I ′N), for s> 0, O ∈ SO(d) anda ∈ Rd. Defining the normalized landmarks by
γ (xi , t) = g(xi,t)−ḡ(t)

σ (g(t)) , then because the action ofs anda does not affectγ (xi, ·);
one can select them in order to cancel the distanceρ0 without changing the second
term, implying that ˜ρ(IN, I ′N) is the minimum of arccos

∑N
i=1〈γ i(xi, 0),Oγ i(xi, 1)〉

whenO varies inSO(d). Whend= 2, there is an explicit solution ˜ρ(IN, I ′N)=
arccos|∑N

i=1〈γi (0, xi ), γi (1, xi )〉|.

PROBABILISTIC MEASURES OF VARIATION
AND STATISTICAL INFERENCE

For constructing probability measures of anatomical variation the Grenander school
characterizes shape as Gaussian fields indexed over the manifolds on which the vec-
tor fields are defined (1, 2, 64, 118, 118a). Associate with the diffeomorphic maps
g: I→ I ′ the vector fields modulo the identity map as a 3-dimensional Gaussian
vector field{U(x),= g(x)− x, x∈M} on the smooth sub-manifold of the full brain
volumeM⊂ X. Expand the Gaussian field using a complete orthonormal basis on
the background spaceM; the U-field becomesU(·)= ∑k ukψk(·), whereuk are
independent Gaussian random variables with fixed means and covariances, and
ψk a complete orthonormal base. Complete orthonormal bases are constructed via
calculation of empirical covariances and their eigenfunctions.

The Csernansky group has been quantifying the variation of the shape of the hip-
pocampus subvolumes in brains via magnetic resonance imagery (61, 62, 119, 120).
CA methods have been used to identify deformations in the shape of the hippocam-
pus that strongly discriminate subjects with schizophrenia from matched controls
(119) and quantify the mildest forms of Alzheimer’s Disease (AD) (120). The
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statistical covariation of hippocampus shape from the populations are grouped
into n1 controls andn2 test cases. The maps are represented via then-vectors
of coefficientsU= (u1, . . ., un)t, whereU(x)= ∑n

k=1 ukψk(x). Wang et al. (121)
have shown that logistic regressions based onχ2 scoring of the groups of coef-
ficients indicate that 3–5 basis functions are sufficient for describing group dif-
ferences. TheU1, U2-vectors are modelled as Gaussian, with empirical means
ˆ̄U1= 1

n1

∑n1
i=1 U1

i ,
ˆ̄U2= 1

n2

∑n2
j=1 U2

j , and common covariances:

∑̂
= 1

n1+ n2− 2

(
n1∑

i=1

(
U1

i − ˆ̄U1
)(

U1
i − ˆ̄U1

)t + n2∑
j=1

(
U2

j − ˆ̄U2
)(

U2
j − ˆ̄U2

)
t

)
.

(22)

The hypothesis test of the two group means with unknown but common covariance
for the null hypothesis,H0: Ū1 = Ū2, has the Hotelling’sT2 statistic given
by T2 = n1n2

n1+n2
( ˆ̄U1 − ˆ̄U2)T 6̂−1( ˆ̄U1 − ˆ̄U2). The sample meanŝ̄U1 and ˆ̄U2 are

therefore normally distributed with means̄U1, Ū2, and common covariance1n1
6,

with
√

n1n2/(n1+ n2)( ˆ̄U1− ˆ̄U2) normally distributed, covariance6 under the null
hypothesis. Following (122, p. 109), (n1+ n2−2)6̂ is distributed as6n1+n2

i=1
−2 XiXt

i
whereXi is distributed according toN (0, 6). Thus,T2 has anF distribution, and
the null hypothesisH0 is rejected with a significance levelα if

T2 ≥ (n1+ n2− 2)K

n1+ n2− K − 1
F∗K ,n1+ n2− K − 1(α), (23)

where F∗K ,n1+n2−K−1(α) denotes the upper 100α% point of the FK ,n1+n2−K−1

distribution, andK is the total number of basis functions used in calculating the
T2 statistics. The log-likelihood ratio for hypothesis testing is

3 = −1

2
(Ui − ˆ̄U schiz)T

∑̂−1
(Ui − ˆ̄U schiz)

+ 1

2
(Ui − ˆ̄U ctrl)T

∑̂−1
(Ui − ˆ̄U ctrl). (24)

The vector coefficients represent the coefficients for the principal components used
in the study. UnderH0, H1 the log-likelihood ratio3 (3 < 0,≥ 0, respectively)
has sufficient statistic Gaussian distributed with means variancesŪ0, σ

2
0 , Ū1, and

varianceσ 2
1 , respectively.

Wang et al. (121) have found that scale and volume are not powerful discrim-
inants of group difference in the schizophrenic and normal populations; how-
ever, shape difference is. Figure 11 examines results from AD, normal aging and
schizophrenia. The top row shows the difference of hippocampal surface patterns
between the controls and targets groups (left: AD, middle: normal aging, right:
schizophrenia) visualized asz-scores on the mean surface.

Joshi showed that Fisher’s method of randomization can be used to derive a
distribution-free estimate of the level of significance of the difference. For all per-
mutations of the given two groups, the means and covariances are calculated from
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Monte Carlo simulations generating 10,000 uniformly distributed random per-
mutations. The collection ofT2 statistics from each permutation gives rise to an
empirical distributionF̂(·) estimatingF(·) in Equation 23 usingFK ,n1+n2−K−1=
n1+ n2− K − 1
(n1+ n2− 2)K T2. The null hypothesis that the two groups have equal means is
rejected whenp= ∫∞T2 F̂( f ) df falls below a predefined significance level. The
Gaussian assumption for the coefficient vectors are valid since the empirical dis-
tribution of theF̂ statistics follows theF-distribution curve.

SUMMARY

This paper reviews recent developments in the formulation of metric spaces for
studying biological shapes in computational anatomy. We expect that such a for-
mulation will provide the fundamental basis for future developments in the quan-
tification of growth and form.
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APPENDIX

Proof of Theorem 3.1:To derive Euler-Lagrange equations for the velocity exam-
ine perturbations on the group elements and velocity fields,g→ g+ εη, v→ v +
εψ . For exact correspondence of the group elements,η(0)= η(1)= 0, as depicted
in panel 2 of Figure 1. For inexact image matching, onlyη(0)= 0 with η(x, t)= 0,
∀x∈ ∂X, ψ(x, t)= 0, ∀x∈ ∂X. If η is a perturbation ofg, define theGateaux dif-
ferentialof E(vg) : G → R+ in the directionη to be the limit, as the perturbation
tends to 0. Also ifψ is a perturbation ofv, define theGateaux differentialof E(gv) :
V → R+ in the directionψ to be the limit, as the perturbation tends to 0.

Lemma A.1 The variations of the velocity and group element viaψ , η are given
by

ψ(x, t) = ∂ηvg(x, t) = lim
ε→0

1

ε
(vg+εη(x, t)− vg(x, t))

= d

dt
η(g−1(x, t), t)− Dvg(x, t)η(g−1(x, t), t) (25)

η(x, t) = ∂ψgv(x, t) = lim
ε→0

1

ε
(gv+εψ (x, t)− gv(x, t))

= Dgv(x, t)
∫ t

0
Dgv(x, u)−1ψ(gv(x, u), u) du. (26)

Proof of Lemma: Defining the notationx ' y to mean limε→0
x− y
ε
= 0, then

d

dt
(g+ εη)(x, t) = vg(g(x, t), t)+ ε d

dt
η(x, t)

= vg+εη(g(x, t)+ εη(x, t), t) (27)

(a)' vg(g(x, t), t)+ εDvg(g(x, t), t)η(x, t)+ ε∂ηvg(g(x, t), t), (28)

with (a) following from the definition of∂ηvg, the total derivative and theo(ε)
equality. Equating Equations 27 and 28 gives the first result of Equation 25. Equa-
tion 26 follows from the linearity ofη givenψ fixed in Equation 25:

∂

∂t
η(x, t) = Dv(g(x, t), t)η(x, t)+ ψ(g(x, t), t)

= ∂

∂t
Dg(x, t)(Dg(x, t))−1η(x, t)+ ψ(g(x, t), t) (29)

since

∂

∂t
Dg(x, t) = Dv(g(x, t), t)Dg(x, t). (30)

Thenη in Equation 26 satisfies the derivative Equation 29, completing the proof
of the Lemma.
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Consider the energyE(vg) defined for all time-dependent diffeomorphismsg(·, t)
solving dg

dt = v(g, t). Now evaluating the variation ofE(vg)=
∫ 1

0 Evg(t) dt with
respect to perturbationsg→ g+ εη gives

∂ηE(vg) = lim
ε→0

1

ε
(E(vg+εη)− E(vg))

(a)=
∫ 1

0
〈∇vE(·, t), d

dt
η(g−1(·, t), t)− Dv(·, t)η(g−1(·, t), t))〉 dt (31)

(b)= 〈∇vE(·, t), η(g−1(·, t), t)〉|10
−
∫ 1

0

〈
d

dt
(|Dg(·, t)|∇vE(g(·, t), t)), η(·, t)

〉
dt

−
∫ 1

0
〈|Dg(·, t)|∇vE(g(·, t), t), Dv(g(·, t), t)η(·, t)〉 dt, (32)

with (a) coming from Equation 25, and (b) the change of variablesy= g(x, t),
with integration by parts eliminating the time derivative ofη. The first term is the
boundary term which is zero for exact matching. This gives the terms in the inner
product forming the Euler-Lagrange functional variation:

− d

dt
(∇vE(g(x, t), t)|Dg(x, t)|)− (Dv(g(x, t), t))t∇vE(g(x, t), t)|Dg(x, t)|

(33)

= −
(
∂

∂t
∇vE

)
(g(x, t), t)|Dg(x, t)| − (D∇vE)(g(x, t), t)v(g(x, t), t)|Dg(x, t)|

− ∂

∂t
(log |Dg(x, t)|)∇vE(g(x, t), t)|Dg(x, t)|

− (Dv(g(x, t), t))t∇vE(g(x, t), t)|Dg(x, t)|. (34)

Now the identity for the derivative of the log-determinant is given by log|A+ εB| =
log|A| + ε traceA−1B+ o(ε), and the time derivative of the Jacobian∂

∂t Dg(x, t) is
given by Equation 30 so that

∂

∂t
log |Dg(x, t)| = trace ((Dg(x, t))−1Dv(g(x, t), t)Dg(x, t))

= traceDv(g(x, t), t) = div v(g(x, t), t). (35)

Substituting along withy= g(x, t) into Equation 34 gives the Euler-Lagrange
equation (Equation 4) completing the first part of the proof.

Proof of Theorem 3.3: Define the energyE(gv, J)= ∫ 1
0(‖v(t) ‖2L + ‖ ∂ J

∂t (t) +
∇ Jt (t)v(t) ‖2) dt . This has to be minimized jointly inv andJ. The gradient inv is
given by∇vE = 2L†Lv + 2( ∂

∂t J(t) + ∇Jt (t)v(t))∇J(t). The nonboundary term
for the perturbation is identical to the above, giving Equation 4. The boundary
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condition att= 1 applies sinceg(1) is free at the endpoint, so the value of the
perturbationη(·, 1) is nonzero, and the boundary term must be taken into account
from Equation 32, giving〈∇vE(1),η(g−1(1), 1)〉=0 so that∇vE(1)= 0. The vari-
ation inJ follows by introducingZ= ∂ J

∂t + ∇Jtv, and computing the perturbation
by φ with v fixed:

lim
ε→0

E(gv, J + εφ)− E(gv, J)

ε

= 2
∫ 1

0

〈
Z(t),

∂

∂t
φ(t)+∇φt (t)v(t)

〉
dt

= −2
∫ 1

0

〈
∂

∂t
Z(t), φ(t)

〉
dt − 2

∫ 1

0
〈∇(Z(t)v(t)), φ(t)〉 dt.

Proof of Inexact Image Matching Theorem 4.1:To compute the boundary term
Equation 11 which holds for inexact matching at the endpointt= 1, the variation
of the inverse map∂ηg−1 in a perturbation is required:

y = (g+ εη)((g+ εη)−1(y, t), t)

' g((g+ εη)−1(y, t), t)+ εη((g+ εη)−1(y, t), t)

= y+ Dg(g−1(y, t))((g+ εη)−1(y, t)− g−1(y, t))+ εη(g−1(y, t), t),

implying

lim
ε→0

1

ε
((g+ εη)−1(y, t)− g−1(y, t))

(a)= −Dg−1(y, t)η(g−1(y, t), t), (36)

with (a) fromDg−1
v (y, t)= (Dgv(g−1

v (y, t), t))−1. The variation of the second match-
ing term becomes

∂η‖I1− I0(g−1)‖2 = −2
〈
I1− I0(g−1(1)),∇ I t

0(g−1(1))∂ηg
−1(1)

〉
, (37)

(a)= 2
〈
I1− I0(g−1(1)),∇ I t

0(g−1(1))Dg−1(1)η(g−1(1), 1)
〉
, (38)

(b)= 2〈I1− I0(g−1(1))D(I0(g−1(1)))t , η(g−1(1), 1)〉, (39)

with (a) using Equation 36 and (b) collecting termsD(I0 (g−1(y, 1)))=∇ I t
0 (g−1(y,

1))Dg−1(y, 1). At t= 1 withg−1(1) free the boundary term Equation 32 is nonzero;
adding it to Equation 39 gives Equation 11.

Proof of Space-Time Growth Theorem 4.2:Substitution ofy= g(x, t) in Equa-
tion 34 gives the variation of the‖v(t)‖2L to be:

−
∫ 1

0

〈
∂

∂t
∇vEv(·, t)+ (Dv(·, t))t∇vEv(·, t)+ (D∇vEv(·, t))v(·, t)

+ div v(·, t)∇vEv(·, t), η(g−1(t), t)

〉
dt. (40)
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The variation of the second term under the perturbation ofg by η follows from
using Equation 36:

−2
∫ 1

0

〈
(I1(t)− I0(g−1(t)),∇ I t

0(g−1(t))∂ηg
−1(t)

〉
dt (41)

= 2
∫ 1

0

〈
(I1(t)− I0(g−1((t), t),∇ I t

0(g−1(t))Dg−1(t)η(g−1(t), t)
〉
dt (42)

(a)= 2
∫ 1

0
〈(I1(t)− I0(g−1(t))D(I0(g−1(t)))t , η(g−1(t), t)〉 dt, (43)

with (a) writing D(I0(g−1(t)))=∇ I t
0(g−1(t))Dg−1(t). Collecting the two compo-

nents of the gradient term from Equations 40 and 43 gives the proof.

Proof of Theorem 6.2: Define normalized landmarksγ (xn, t)= g(xn,t)−ḡ(t)
σ (g(t)) ,

g(xn, t)= σ (g(t)) γ (xn, t) + ḡ(t), then

∂g

∂t
(xn, t) = dσ (g(t))

dt
γ (xn, t)+ σ (g(t))

∂γ

∂t
(xn, t)+ dḡ

dt
, (44)

implying
∫ 1

0 ‖ ∂g(t)
∂t ‖2Q(g(t)) dt equals

N∑
n=1

(∫ 1

0

1

σ 2(g(t))

(
dσ (g(t)

dt

)2

|γ (xn, t)|2 dt

+
∫ 1

0

1

σ 2(g(t))

dḡ

dt

2

dt +
∫ 1

0

∥∥∥∥∂γ∂t
(xn, t)

∥∥∥∥2

dt

+ 2
∫ 1

0

1

σ (g(t))

dσ (g(t)

dt
γ (xn, t)

dγ (xn, t)

dt
+ 2

∫ 1

0

1

σ (g(t))2

dḡ(t)

dt
γ (xn, t) dt

+ 2
∫ 1

0

1

σ (g(t))
ḡ(t)

N∑
n=1

dγ (xn, t)

dt
dt

)

(a)=
∫ 1

0

1

σ 2(g(t))

(
dσ (g(t)

dt

)2

dt + N
∫ 1

0

1

σ 2(g(t))

dḡ

dt

2

dt

+
∫ 1

0

N∑
n=1

∥∥∥∥dγ

dt
(xn, t)

∥∥∥∥2

dt, (45)

with (a) following from‖γ (t)‖2= 1, implying the 4th termd
dt‖γ (t)‖2 = 0, the

5th term has mean zero, and the final term is the derivative of the mean, which
is zero. Denote byρ0((σ (g(0)), ḡ(0)), (σ (g(1)), ḡ(1)))2 the minimum of the first
two terms; the minimum of the last term can be explicitly computed (because
(γ (., x1), . . ., γ (·, xN)) and belongs to a sphere of dimensionN− 2 and is given by
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the length of the great circle in the sphere which connects the extremities of the
path, namely (arccos

∑N
n=1〈γ (0, xn), γ (1, xn)〉)2 so,

ρ(IN, I ′N)2 = ρ0((σ (g(0)), ḡ(0)), (σ (g(1)), ḡ(1)))2

+
(

arccos
N∑

n=1

〈γ (0, xn), γ (1, xn)〉Rd

)2

. (46)



1 Jul 2002 16:46 AR AR164-16-COLOR.tex AR164-16-COLOR.SGM LaTeX2e(2002/01/18)P1: GDL

F
ig

ur
e

6
D

ef
or

m
at

io
n

m
ap

s
sh

ow
in

g
gr

ow
th

in
th

e
co

rp
us

ca
llo

su
m

ar
ea

fr
om

th
e

To
ga

la
bo

ra
to

ry
at

U
C

LA
.M

ap
s

ba
se

d
on

sc
an

ni
ng

th
e

ch
ild

re
n

at
va

rio
us

st
ag

es
w

ith
de

fo
rm

at
io

n
fie

ld
s

ap
pl

ie
d

to
th

e
re

gu
la

r
gr

id
ov

er
la

id
on

th
e

ea
rli

es
t

an
at

om
y.

T
he

Ja
co

bi
an

de
te

rm
in

an
t,

w
ho

se
va

lu
es

ar
e

co
de

d
in

co
lo

r
on

th
e

de
fo

rm
ed

gr
id

,
sh

ow
s

th
e

lo
ca

l
gr

ow
th

ra
te

(
re

d
co

lo
rs,

ra
pi

d
gr

ow
th

).
F

as
te

st
gr

ow
th

is
fo

un
d

co
ns

is
te

nt
ly

,a
cr

os
s

ag
es

7–
13

,i
n

th
e

is
th

m
us

,a
re

gi
on

of
th

e
co

rp
us

ca
llo

su
m

th
at

ca
rr

ie
s

fib
er

s
to

ar
ea

s
of

th
e

ce
re

br
al

co
rt

ex
th

at
su

pp
or

t
la

ng
ua

ge
fu

nc
tio

n,
an

d
ar

ea
s

of
th

e
te

m
po

ro
-p

ar
ie

ta
lc

or
te

x
th

at
su

pp
or

ta
ss

oc
ia

tiv
e

an
d

m
at

he
m

at
ic

al
th

in
ki

ng
.R

es
ul

ts
ta

ke
n

fr
om

T
ho

m
ps

on
et

al
.(

97
).



1 Jul 2002 16:46 AR AR164-16-COLOR.tex AR164-16-COLOR.SGM LaTeX2e(2002/01/18)P1: GDL

F
ig

ur
e

8
(T

o
p

ro
w)

P
an

el
s

1–
2

sh
ow

th
e

tw
o

te
st

pa
tte

rn
s

an
d

th
e

m
at

ch
in

g
(p

an
el

s
3–

4)
us

in
g

va
ria

nc
es

of
σ

2
=

0.
1,

10
,

re
sp

ec
tiv

el
y.

R
es

ul
ts

fr
om

(6
9)

.(B
o

tt
o

m
ro

w)
P

an
el

5
sh

ow
s

sp
he

ric
al

de
fo

rm
at

io
ns

dr
iv

en
by

th
re

e
la

nd
m

ar
ks

al
on

g
th

e
lo

ng
itu

de
lin

e
θ
=
π
/
3

m
ap

pe
d

to
th

e
co

rr
es

po
nd

in
g

po
in

ts
al

on
g

th
e

lin
e

θ
=
π
/
4.

N
ot

ic
e

th
e

co
nt

ra
ct

io
n

of
th

e
lo

ng
itu

de
lin

es
be

tw
ee

n
θ
=
π
/
3

an
dθ
=
π
/
4.

P
an

el
6

sh
ow

s
a

si
nu

so
id

of
la

nd
m

ar
ks

on
th

e
sp

he
re

w
ith

th
e

re
su

lti
ng

de
fo

rm
at

io
n

sh
ow

n
in

pa
ne

l7
.N

ot
ic

e
th

e
dr

am
at

ic
de

fo
rm

at
io

n
of

sp
he

ric
al

co
or

di
na

te
s.

R
es

ul
ts

ta
ke

n
fr

om
B

ak
irc

io
gl

u
et

al
.(

70
).



2 Jul 2002 15:56 AR AR164-16-COLOR.tex AR164-16-COLOR.SGM LaTeX2e(2002/01/18)P1: GDL

Figure 9 Two columns show the Van Essen surface-based atlas of macaque visual
cortex. Left column shows the macaque atlas (top row) and flattened version (bottom
row). PanelA shows the flat map. Shading indicates cortical geography, black lines
indicate the landmark contours used to constrain the deformation (along sulcal fundi
and along the map perimeter). PanelB shows the pattern of grid lines after deformation
into register with the target atlas map in panelD. PanelC shows the vector field for
selected grid points (at intervals of 10 map-mm). Arrow bases indicate grid positions
in the source map, and arrow tips indicate the location of grid points in the deformed
source map. PanelD shows the map of geography (shading) and target registration
contours (black lines) on the atlas map. PanelE shows contours from the deformed
source map (black lines). Results from (100).

Figure 10 (Top row) Panel 1 shows 3-D Visible Human Male, panel 2 shows the land-
marks on macaque flat maps, panel 3 shows the landmarks on the human flat maps, and
panel 4 shows the boundaries of deformed macaque visual areas (black lines) superim-
posed on the fMRI activation pattern from an attentional task from Corbetta et al. (117)
after deformation to the Visible Man atlas. (Bottom row) Panel 5 shows the spherical
map of the macaque visual cortex. Panel 6 shows the spherical map of the deformed
macaque visual areas, along with the deformed latitude and longitude isocontours.
Panel 7 shows the deformed macaque visual areas with the latitude and longitude lines
of the Visible Human spherical map. Results taken from Van Essen et al. (100).
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