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m Abstract This paper reviews literature, current concepts and approaches in com-
putational anatomy (CA). The model of CA is a Grenander deformable template, an
orbit generated from a template under groups of diffeomorphisms. The metric space
of all anatomical images is constructed from the geodesic connecting one anatomical
structure to another in the orbit. The variational problems specifying these metrics
are reviewed along with their associated Euler-Lagrange equations. The Euler equa-
tions of motion derived by Arnold for the geodesics in the group of divergence-free
volume-preserving diffeomorphisms of incompressible fluids are generalized for the
larger group of diffeomorphisms used in CA with nonconstant Jacobians. Metrics that
accommodate photometric variation are described extending the anatomical model to
incorporate the construction of neoplasm. Metrics on landmarked shapes are reviewed
as well as Joshi’s diffeomorphism metrics, Bookstein’s thin-plate spline approximate-
metrics, and Kendall's affine invariant metrics. We conclude by showing recent ex-
perimental results from the Toga & Thompson group in growth, the Van Essen group
in macague and human cortex mapping, and the Csernansky group in hippocampus
mapping for neuropsychiatric studies in aging and schizophrenia.
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INTRODUCTION

Revolutionary advances in the development of digital imaging modalities com-
bined with advances in digital computation are enabling researchers to make ma-
jor advances in the precise study of the awesome biological variability of human
anatomy. This is emerging as the exciting new field of computational anatomy
(CA) (1,2). CA, as first defined in Reference (2), has three principal aspects:
(a) automated construction of anatomical manifolds, points, curves, surfaces, and
subvolumes;lf) comparison of these manifolds; ara@ the statistical codification

of the variability of anatomy via probability measures allowing for inference and
hypothesis testing of disease states. This review will focus on asfpetsd €).
Although the study of structural variability of such manifolds can certainly be
traced back to the beginnings of modern science, in his influential treatise “On
Growth and Form”in 1917, D’'Arcy Thompson had the clearest vision of what lay
ahead, namely:

In a very large part of morphology, our essential task lies in the comparison of
related forms rather than in the precise definition of each; andftemation

of a complicated figure may be a phenomenon easy of comprehension, though
the figure itself may have to be left unanalyzed and undefined. This process
of comparison, of recognizing in one form a definite permutaticthedorma-

tion of another, apart altogether from a precise and adequate understanding
of the original ‘type’ or standard of comparison, lies within the immediate
province of mathematics and finds its solution in the elementary use of a certain
method of the mathematician. This method is the Method of Coordinates, on
which is based the Theory of Transformations.
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The study of shape and structure has certainly progressed a long way; Thomp-
son’'s vision is precisely the mathematical structure we term anatomy in CA (1, 2),
a Grenander deformable template (3) in which the space of anatomical imagery is
an orbit under groups of transformations. There are two types of transformations,
the first of the geometric or shape type studied through mappings of the coordi-
nate systems of the anatomies. Variation in the image space is accomodated by
introducing groups of diffeomorphic transformations carrying individual elements
from one to another. The diffeomorphic transformations (invertible differentiable
mappings with differentiable inverse) fill out the anatomy. The second transforma-
tion type is of the photometric values accomodating the appearance or creation of
new structures. Equally exciting is that in recent years, metric space structures have
been associated with the orbits of anatomical imagery. The metric is calculated
via equations of motion describing the geodesic connection between the elements.
Thus the original vision of Grenander’s metric pattern theory is in large part being
carried out in CA: Metric distances between patterned shapes and structures are
measured via distances between the mappings.

In this paper, we first describe some of the recent work in the mapping litera-
ture of computational neuro-anatomy. We then review the basic model of CA as
a Grenander deformable template, an orbit generated under groups of diffeomor-
phisms. Next, we define metrics between anatomies associated with shortest length
paths connecting one anatomical mapping to another in the orbit, measuring both
geometric and photometric variation. The variational problems specifying these
metrics are reviewed along with the associated Euler-Lagrange equations. Interest-
ingly, the Euler-Lagrange equations of motion for the geodesics characterizing the
metric generalize the Euler equations of Arnold (4) from flows through the group
of volume-preserving diffeomorphisms to those appropriate for the more general
space of non-volume-preserving diffeomorphisms appropriate for the study of
general shapes. In this context, metrics on landmarked shapes are reviewed. We
conclude by showing results on the study of growth and development, human and
macague cortex, and computational neuropsychiatry in aging and schizophrenia.

RECENT PROGRESS IN CA

The area of mathematical codification of biological and anatomical structure has
been exploding over the past several decades. Digital electronic databases are cur-
rently available (5), especially for colocalization of volume datasets such as those
encountered with PET/SPECT, CT, and MRI (6—14). Suitable atlases supporting
neuromorphometric analyses (15) are now becoming available with the advent of
large volumetric image data sets with large numbers of voxel samples. Complemen-
tary to the atlas development work, there has been great progress in the application
of D’Arcy Thompson'’s transformations in cataloguing and in studying shapes. The
earliest landmark and volume mapping work of biological coordinates, pioneered
in the early 1980s by Bookstein (16) and Bajcsy (7), continues today in many
groups including the Ayache-Gourdon-Thirion group (17-22), the Bajcsy-Gee
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group (7, 8, 23-27), the Bookstein group (16, 28-33), the Dale-Fischl group (34—
37), the Duncan-Staib group (38-44), the Evans group (45-53), the Friston group
(48, 54, 55), our own Grenander-Miller-TroenYounes group (1, 2, 56-76, 76a),

the Kikinis-Jolesz group (77-82), the Davatzikos-Prince group (83—-92), the Sapiro
group (92a—-92c), the Hurdal-Sumners group (93), the Mazziotta-Toga group (11,
94-98), the van Essen group (66, 99-101), and the Wandell group (92c, 101a,
101b), to name a few. Many of these approaches have studied higher dimensional
transformations and mappings. Concurrently, efforts have proceeded along the
lines of establishing the power of these approaches in lower and moderate dimen-
sional settings in which the image structures being matched are more globally
defined, with the variability of global structures being the primary goal of success-
ful registration. Complementary to the volume work, there has been great progress
on anatomical mapping via subsets of landmarked points. For such approaches,
predefined subsets of the anatomy provide registration information and become the
principal features about which variational studies between the various coordinate
systems proceed.

Structured approaches via deformable templates and contour and surface mod-
els studying the variations of substructures via boundaries and surfaces via vec-
tor field transformations have emerged in many of these efforts. Detailed gross
macroscopic studies of cortical folding and localization of functional and anatom-
ical boundaries are emerging in both macaque and human brains, with automated
methods for generating the sulcus and gyral principle curves becoming available.
Active shape methods have presented significant advances as well for studying
anatomical shapes, including the active contour and surface deformation work
by Terzopoulos (102-105), Pentland & Sclaroff (106—-108), and Cootes & Taylor
(109-111).

Because of the sheer complexity of human neuroanatomy, in particular the
human brain, the study of brain geometry has emerged as the study of the sub-
manifolds of anatomical significance including its landmarks, curves, surfaces,
and subvolumes all taken together forming the complete volume. The complete
methodology combines mappings that carry all of the submanifolds of points,
curves, surfaces, and subvolumes together. This is precisely why in our own group
the fundamental transformation group that we have studied are spaces of diffeo-
morphisms, as they carry these submanifolds consistently. The transformations are
constrained to be 1-1 and onto, and differentiable with differentiable inverse, so
that connected sets remain connected, submanifolds such as surfaces are mapped
as surfaces, and the global relationships between structures are maintained.

THE METRIC SPACE OF ANATOMICAL IMAGES

Geodesics Connecting Geometric Transformation
via Diffeomorphisms

The mappings of the geometric or shape type are exclusively invertible, 1-1, onto
continuous mappings with continuous inverses that are differentiable, henceforth
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called diffeomorphisms. These transformations form a group, denotg§daith
elementg € G, and the coordinates that they transform are subsétg®énerally,

the low-dimensional transformations—rotation, scale, and skew—are studied in
tandem with the infinite dimensional local diffeomorphic transformations. As orig-
inally proposed by Christensen etal. (59), one models the transformations as arising
from an evolution in time, or a flow(t), t € [0, 1] corresponding to the transport
equations from continuum mechanics [see Dupuis (65) and €@6®, 76) for

their technical development]. The forward and inverse maps are uniquely defined
according tay~%(g(x, t), ) =xforall t € [0, 1], xe X, implying the equations of

flow are linked according to

g0t = (g 1.0, g7y 1) = ~Dg Ky, huly. 1),

9(0) = g~(0) =d, (1)
id the identity map the Jacobian operator giving dhed matrix for R%valued
functions Df);; = 3% and thed x 1 row vectorDf = ( ax ) for scalar

valued functions deﬁned ah-dimensional domain. The ffow equations are depic-
ted in panel 1 of Figure 1.

Definition 3.1 Define the group of transformation$ to be diffeomorphisms
0g()eG: x — g(x 1) X, 1-1, onto, with continuous inverse and differentiable
solutions of Equation 1, with(t), t € [0, 1] sufficiently smooth and vanishing at
the boundary of X for each t to generate smooth solutigh} g—(1) (60, 65, 76).

One principal aspect of CA is to define the metric distance between anatomies
through the mappings between them. We follow the approach taken in Refer-
ences (60,68, 71, 76); embed the diffeomorphisms in a Riemannian space and
define distance between them via the geodesic length of thedlewf0, 1] — G

Figure 1 Panel 1 left) shows the Lagrangian description of
the flow; panel 2right) shows the variation of the group flow

elemenig(-) by n(-).
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which connects them. The geodesic length is defined through the square root
of the energy of transformation of the pat(g) = fol [lv(t)]I2dt, v(t) = ag/at

with ||-||. a proper norm on the vector fields ofi(i.e., a Sobolev space with

L a differential operator). Investigators have used linear differential operators
operating on the vector fields to enforce smoothness on the maps and to define
the finite norm, generally differentiating only in space and constructed from the
Laplacian and its powers.is ad x d matrix of differential operatork = (L;;) on

RY valued vector fields of the formLp); = Zid:l Lijvi, j = 1,...,d inducing

a finite norm constraint at each timheDenote the norm-squared energy density
according to

E.(t) = /X E,(x. 1) dx = [v®)17 = (Lu(+ 1), Lu(-1)) < co.t € [0.1], (2)

sothat the solutions of Equation 1 are well defined. The energy density has been de-
fined through powers of the Laplacian for the classic thin-plate splines (16, 29, 30)
and the Cauchy-Navier operator for 3-dimensional elasticity (25, 56, 59, 97). Dif-
ferential operators with sufficient derivatives and proper boundary conditions
insure the existence of solutions of the transport equation in the space of dif-
feomorphic flows (60, 65, 76).

Now the metric between transformatioms g; € G is defined via the length of
the shortest patét), t € [0, 1] with the boundary conditiorg{(0) = go, 9(1) = 0s.
A crucial property of the metripg: G x G — RT is that it is invariant tag, so
that pg (9o, 91) = pg(d - Go. 9- 01) for g € G, whereg'-g=gog.

Theorem 3.1The functionog(-,-): G x G — RT between elements,mi € G
defined as

1
pc (0o, 91)° = inf / E®d, @3
9(): & 9~ 1(t)=—Dg(t)v(t).9(0)=00.9(1)=0: J0O

is a left-invariant metric distance ofi. The geodesics satisfy the Euler-Lagrange
equationg proof in Appendix

%vu Eo(. 1) + (Du( D)V, Eu(- 1)

+ (va Ev('v t))U(, t) + dIV U('? t)vv Ev('s t) = 0, (4)

whereVis the gradient operator delivering a vectdr, E, (t) = 2L Lv(t) with the
adjoint defined agLf, g) = (f,L'g), div v = %; 37“' the divergence operator

Equation 4 was first derived by Mumford (112) who also showed that it reduces to
Burger’s equation in one-dimension foe= id, V, E, = 2v. Mumford used a varia-

tional argument for calculating Equation 4 perturbing the geodesij¢hy € [0, 1]

leaving the endpoints unchanged (see panel 2 of Figure 1 and appendix). Equation 4
generalizes Arnold’s derivation for incompressible flow [Equation 1 of (4)]. The
left-invariance follows from that fact that translation by another group element
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leaves the distance unchanged beczg@esatisfies% = v(g(-, 1), ), 9(0) =

id, g(1) = g; implying g(0) o h=h, g(1) = g; o h, with an identical velocity field so
that 220000 — y(g(h(x), t), 1), g(0) = h, g(1) =g (h). The distancepg(id, g) =

pg(h, goh) are equal foral € G. As pointed out by Ratnanather and Baigent (per-
sonal communication), the left-invariance of the metric allows the Euler-Lagrange
equations to be recast in the Euler-Poirdarm using Marsden'’s reduction theory
(114).

Inducing the Metric Space on Anatomical Images

The group of geometric transformations are not directly observable. Ratherimages
are observed via sensors which measure physical properties of the tissues. Carrying
out Grenander’s metric pattern theory program, the space or orbit of anatomical
imagesl €Z must be made into a metric space. The metric distance between
anatomical imagery €7 is constructed from distances between the mappings

g €g. First, the anatomical orbit of all images is defined.

Definition 3.2 The mathematical anatomy are functiors?, |: x € X+—1(x), an
orbit under the geometric transformatioris:={1":1'(-)=1(g(-)), | €Z, g€ G}.

This is a group action (113) drwithg - | =1 o gand group produdy’ - g(-) =go
g'(-) =9(d'(-)), which defines the equivalence relatign~ I, if 3g € G such that
11(-) =1x(g(-)), dividing Z into disjoint orbits.

Now, there can be many high dimensional maps connedtting For the in-
duced functionp on Z to be a metric it is required that is invariant to this
nonidentifiability; this it inherits from the left-invariance propertymj.

Theorem 3.2 The functionp(-, -): Z x Z— R" between elements|Il' € T de-
fined as

(1,12 = inf fl E, (t) dt (5)
0

g% 971 t)=—Dg 1 (t)v(t),1 (g=*(- 1))=1"(-),g~1(0)=id
is a metric distance off satisfying symmetry and the triangle inequality

The metric property was proved in References (60, 71, 76). The property suf-
ficient for p to be a metric is the left-invariance pf[in fact, all that is required
is it be invariant to the stabilizer; see (71)]. The fact thatis left-invariant toG
implies that for allge G, p(1 0 g, I’ o g) = p(l, 1"). This also implies any element
in the orbit can be taken as the template; all elements are equally good.

Expanding the Metric Space to Incorporate
Photometric Variation

Thus far, the metric depends only on the geometric transformations of the back-
ground spac&. Extend the construction of the metric to be image dependent fol-
lowing Reference (71) by defining the group action to operate on the geometry and
photometric values allowing for the creation of new matter. For this, we introduce
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an explicit dependence on time in the evolution of the image to accomodate pho-
tometric variation via material transport.

Theorem 3.3Defining the image evolution in the orbit ag/X) = 1(g~(y, t), t),
297y, t) = —Dg }(y. t)v(y. t), then the functiom(-, -): Z x T — RT between
elements,ll’ € 7 defined as

2

) dt (6)

is a metric[proven in(71)] satisfying symmetry and the triangle inequality.
Defining

VLED.D = 2L L. 0+ 2( 5900 + VI 0uly.0) VIO, (@)

1
d
1) = inf )12 + [ — J(t) + VI'(t)v(t
o= ot (uv(>||L+Hat ©) + VI Q)

then the Euler Equation 4 holds with boundary teRpE (-, 1)=0 with the
geodesics for photometric evolution satisfy{mgoof in Appendix

LTLu(y, t) + (%J(-, t) + VI, (-, t)) vI(,t)=0, (8)
3 (9J3(,1)
e (T + VI, (., t))
+ diV(aJa(;[’ t)v(-, t) + (VI'(, t)u(, t)v(., t)) =0. 9

EULER-LAGRANGE EQUATIONS FOR INEXACT
IMAGE MATCHING AND GROWTH

A central problem in CA is essentially diffeomorphic image interpolation, i.e., to
infer the geometric image evolution that connects two elemignts € Z under

pure geometric evolution. For this a function of the path is defined; dalbit*(t)),

t € [0, 1]. The goal is to construct the shortest length cyfie t € [0, 1] which
minimizes the target norm squargth(g—2(1)) — 11|?, as studied in Dupuis et al.

(65). This is of course inexact matching, since there is a balance between metric
length of the path and target correspondence. We can view the image evolution
defined by the geodesic as an interpolation between images via the geodesic.
Because of the introduction of the free boundary, there is a boundary term which
is introduced.

Theorem 4.1 (Inexact Image Matching)The minimizer

1
inf / E.()dt+ 11— lo(@ @)?  (10)
9(-): 2 g-1(t)=—Dg~(t)v(t),9(0)=g0 J0O
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satisfies the Euler-Lagrange Equation 4 with boundary téonoof in Appendix
VoEu( 1) +2(11() = lo(g™*( 1))D(lo(@ (-, 1)) = O, (11)

where Olo (g7(-, 1)) = VI5(g(-, 1)) Dg~*(:, ).

The above has no real-time variable, only connection or interpolation between
two images via the geodesic. Now assume that the observables define a running
norm squaredjl1(t)— lo(g~X(t))||I% t € [0, 1], corresponding to a time sequence
that might occur during space-time growth modelling. Then the problem is akin
to finding the trajectory of diffeomorphisms creating observable time flow.

Theorem 4.2 (Space-Time Growth)The minimizer
1 1
| int [ B0t [ i - @ oz @2)
g: %91 (t)=—Dg 1(t)v(t).g(0)=id.t [0,1] Jo 0
satisfies the Euler-Lagrange equati@proof in Appendix

DV )+ (D0 D) VLEL( ) + DV O)(- 1)

+divo(, OV, Ey (-, 1) = 2(11(, t) — lo(@ (-, 1)) D(lo(g (-, 1))". (13)

COMPUTATIONAL IMAGE MATCHING

Beg’s Geometric Transformations via Inexact Matching

In this section, we examine the results of solving the Euler-Lagrange equations for
generating the geodesics. Faisal Beg solves inexact image matching (Equation 10)
via variations with respect to the velocity field exploiting the vector space structure.

Algorithm 5.1 Fixed points of the following algorithifproof in supplemental ma-
terial link in the online version of this chapter or at http://www.annualreviewg.org
satisfy Equations 4 and 11. Initializ€'? = 0, choose constant, then for all t

[0, 1],

Step 1121 g™(t) = v04(g™ (V). ). - g "(D) = —~Dg ),
X"t = g"*Mg "), 1),
Step 2: Compute™"(t) = v2(t) — eV, E(t), setv® « v"™" returnto Step 1
(14)

where
V,E(t) = vt) + (LTL) " (IDx"™"(t)]

x D(lo(g™ (1) (11 (x () —lo(g™"*(1)))) - (15)
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Here (LTL)~1f=Kf where K is the Green’s kernel. The space-time solution of
Equation 13 has gradient

1
VLE(t) = v0%(t) + (LTL>1( [ 102 2DGelg o)

< (110"t 7). 1) — To(g™ (1) dr) (16)
wherey (t; t) = g(g7(t), 7)

(for proof see supplemental material link in the online version of this chapter or
at http://www.annualreviews.org). Notice the smoothing nature of the space-time
solution.

Beg'’s gradient descent algorithm discretizes Equation 15. At the fixed point, the
discrete version of the Euler-Lagrange equation is satisfied. Except where noted,
the operator is chosen to be= —50v2 + 0.1 id and the flow timee [0, 1] was dis-
cretized into 20 timesteps. All geodesic solutions correspond to 10,000 iterations of
the gradient algorithm. Results of the mapping of multiple shapes including the for-
ward and inverse diffeomorphic matches for large deformation are shown in Figure
2. Figure 3 shows the results of maps on the geodesic of the flows %ﬁ)thleape to
theC shape (with 30 timesteps) and Heartl to Heart2 experiments. Figure 4 shows
results from the Macaque brain and hippocampus section mapping experiments.

The Psychophysics of the Metric

Shown in Figure 5 are examples of metric computations in 2-D on high resolution
electron-micrographs. The mitochondria are shown in increasing order of their
metric distance. Herd,is —50V 2 + id. Notice how increasing the distance in the
metric corresponds closely to one’s intuitive feel of closeness and similarity.

Space-Time Flows

The UCLA group of Thompson & Toga (97) has examined the instantaneous
version of the growth problem in which, at each time instant, the deformation field
is estimated independent of previous time. Figure 6 shows maps of growth in the
brains of children, showing growth rates corresponding to the corpus callosum.
The maps are made based on scanning the same child at age 7 and 11, and another
child at age 8 and 12. Pairs of 3-D scans acquired several years apart are first
rigidly registered. A 3-D deformation vector field basedlor= —V? 4 cVV!

is constructed at each time point with two components of the deformation field
applied to the regular grid overlaid on the anatomy. The Jacobian determinant,
whose values are color coded on the deformations shows the local growth rate (red
colors, rapid growth).

Photometric Matching with Tumors

We examine photometric variation with= V2= axz + 3 2 and ||v(t)||2 = 1
Z, _ V20 (t)|1? from Equation 6, where is a posmve parameter Comparlson
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Figure 2 Row 1 showsyand row 2 shows (g1(:, 1)); row 3 shows s, and row 4 showsk,

(ga(:, 1)). Column 1 shows a diagonal shift, column 2 shows a dilation and contraction (scale),
column 3 shows a rotational motion (téé: shape experiment), column 4 shows a section

of Heart 1 matched to corresponding section of Heart 2, and columns 5 and 6 show sections
of hippocampus in a young control to that with schizophrenia and with Alzheimer’s. Shown
in the bottom row are the propemesgﬁl( 1) (panel 1), the deformation of the underlying
coordinate space of the templa@.c( 1) (panel 2), the deformation of the underlying
coordinate space of the target, the Jacobian of the forwardgfiap) (panel 3), and the

norm of the velocity field along the flow for 1, 100, 1,000, 5,000, 10,000 iterations of the
algorithm (panel 4). Notice the geodesic property at the convergence point corresponding to
the constant nornjv(t)|| = constant

between two imagekand |’ is performed by minimizing over all paths satisfy-
ing v(x, )=0, te]0, 1], xe dX, andJ(0)=1,J(1)= " as in Reference (71); see
algorithm in Supplemental Material link in the online version of this chapter
or at http://www.annualreviews.org. Figure 7 shows results demonstrating the
transformation proces§g='(-,t), t) as functions of time < [0, 1] between two
imaged andl’. The top two rows show the process of either creating photometric
or geometric change. Depending on the choice of the parametbe process
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£C Metric 0 142.72 380.50 199.53 713.62

Heartl Metric 0 79.29 198.24 257.71 396.48 Heart2

Figure 3 Rows 1 and 3 show images along the geodesic at time points O (patidpBnel

2),tg (panel 3) 12 (panel 4) 115 (panel 5), and; g (panel 6). The metric distance from the start
point is shown below each panel. Rows 2 and 4 show the vector fields at three different time
points on the geodesie(-, tg), v(:, t1g), v(-, t1g). The heart data (rows 3, 4) were taken from
the laboratory of Dr. Raimond Winslow.

allows for the creation of pixel luminance yielding a transformation that looks like
fading with almost no geometric deformation at allgmall), or the process will
introduce a large deformation of the grid resembling an explosidarge). The
bottom row of Figure 7 is the result of matching sections of a brain with a tumor
shape. The rightmost panel shows the centered black spot.

FINITE DIMENSIONAL SHAPE SPACES

A special class of images corresponding to finite dimensional landmark shapes
has been extensively studied by Bookstein (16,29, 30) and Kendall (115) and
colleagues. Fix an integer number of landmaxks 0 and denote b§fy = (RN

the space of landmarks parameterizing the fiNighapes through the points that
identify themly=(Xy, ..., Xn), I = (X3, - .., Xy). The natural distances between
shapeg: Iy x Iy — R* are the lengths the paths through which the points must
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Mac.1 Metric 0 49.24 123.12 160.05 246.24 Mac.2

Young Metric 0 5.3378 88.3446 114.8479 176.6891 Alz.

Figure 4 Row 1 shows the maps along the geodesic connecting Macaquel to Macaque2;
row 2 shows the velocity fields along the geodesic for the 2-D matching experiments. The
data were taken from the laboratory of Dr. David Van Essen. Rows 3 and 4 show similar
results for the hippocampus mappings along the geodesic connecting the young control to
the patient with Alzheimer’s disease. Row 4 shows velocity fields along the geodesic for the
2-D matching experiments. The data were taken form the laboratory of Dr. John Csernansky.

travel to correspond. Distance is measured through a quadratic form determining
the length of the tangent elements as the particles flow.

Definition 6.1 For N-shapesy, | with trajectories @t) = (g(xa. 1), . . ., g%, 1), iN
RY, g(x, 0)=x;, g(x, 1)=x' of Iengthf0|| 990 ||Q(g(t)) dt, then the geodesic dis-
tance is

1 N
V2 _ ; : t . }
,O(I N> lN) _g():g(xn,O)L';](I,g(xn,l):x;] /O IJZZ::L U(g(X| 9 t)s t) Q(g(t))lj U(g(xjs t)s t) dt»

17

where (g(t)) is an Ndx Nd positive definite matrix with & d blocks (g(t));
with Nd x Nd inverse Kg(t)) = (Q(g(t))) %, with d x d blocks(K(g(t)));; -
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0 174.54 228.36 378.00 416.95

0 115.53 119.36 149.94 161.95

0 247.56 248.21 337.18

Figure 5 The top row shows the mitochondria subshapes for matching from the
laboratory of Dr. Jeffrey Saffitz. Rows 2, 3, 4, and 5 give below each panel the metric
for the geodesic distances to indicate which shapes are close and far. Notice how in-
creasing the distance in the metric corresponds to closeness and similarity.
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Fritee ]
HEE

i
R
SERETEE

Figure 7 The first row corresponds to smalj the second row corresponds to large

«. The left column shows start and end imaggd;; the middle column shows the
geometric deformations on the grid determined by mapgirtx, 1); the right column
shows the image value change. The last row shows a time series of geometric and
photometric transformations in generation of tumor in brain tissue. Results from Miller
& Younes (71).

Diffeomorphic Landmark Matching in Euclidean
Space and the Sphere

MATCHING ON THE CUBE [0,1] The Joshi metric for diffeomorphic matching of
landmarks turns out to reduce to the dense matching diffeomorphism only involving
the paths of the landmarks. These are the Joshi diffeomorphism splines as first
shown in (69). Assume the the quadratic fdrngt) ||f admitsd x d Green’s kernel

K so that for alff in the spacd f || _finite,

(K(x. ), fiL = /x LTLK(x, y) f(y) dy = f(x). (18)

Theorem 6.1 (Joshi (69))For N-shapesy, 11, € RN, %g(x, t)=v(g(x, t), 1),
g(%n, 0)=Xn, 9(Xn, 1)= X}, the optimizing diffeomorphism satisfying

1 N — g(xn, 1)[12
inf /0 ||v(-,t)||Edt+Z—"y” gézn )”Rd, (19)
n=1

v:RYI[v(-,t)12dt<oo
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with Nd x Nd Green’s kernel Ky(t)), inverse Qg(t)) = K-(g(t)) where

K(9(x1, 1), 9(x1. 1)) - -+ K(g(xa, 1), g(xn, 1))
K(g(t)) = : : :
K(9(xn. 1), 9(x1. 1)) - - - K(g(xn. 1), g(xn. 1))

is given by

N N
v(, 1) = Y K(G(Xi, 1), ) Y QE)in 9%, 1)
i=1 n=1

and

1
g, N=1...,N=  argmin N /o Zg(Xi,t)tQ(g(t))ij g(x;, t)dt
A -

N XN: lIyn — g(xn, DIz

n=1

(proof in supplemental material link in the online version of this chapter or at
http://www.annualreviews.o)g

Joshi (69) examines the matching problem in Euclidean subs&t%foflow-
ing the gradient of the cost in the plane=2, and cubic volumes =3 choos-
ing operators constructed from the Laplaciag diag(—V? + cl), studying both
exact and inexact landmark matching.Rd, the 3x 3 diagonal blockK(x, y)
— diagfce™V ¢ 1VX1] with « normalizingx [e~ VEly=xI dy = 1. The top row of
Figure 8 shows the matching for the “OVAL” and “Sénels 1 and Pfrom Joshi’s
gradient algorithm (69). The corresponding points were used as landmarks with
variancesr2=0.1 (panel 3 ando?=10 (panel 4.

Matching on the SphereS? Investigators in CA, beginning with the earliest work
of Dale & Sereno (34), have introduced transformations on the sphere to study the
neocortex. Bakircioglu et al. (70) constructed diffeomorphisms on the sphere via
maps that are constrained to satisfy flow equatlg{g(x t) = v(g(x,1),t), g
(x, 0)=xte[0,1],x € S v(x )= 32, ui(x t) E(x); whereEy(-), Ex() are
coordinate frames on the sphere from stereographic prOJectlon

Fo{r2 smoothing, the spherical Laplacian operator is uked £ + cotqja
ﬁ #), which has as eigenfunctions the spherical harmonics (116) méhcmg the
2N x 2N diagonal block matrix

. = 1 n+1
K(g(t))” = dlag|: ; n2(n + 1)2 47_[ Pn(COS(lI}(g(Xi ) t)v g(XJ ’ t)))] )
with the spherical solid anglé (-, -) and Legendre polynomiaR,(x) = ﬁ%

(x? —1)".
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Given N-landmarksx,, yn, n=1, ..., N ¢ &, with distance on the sphere
¥ and coordinate frames on the sph&reE,, the optimal diffeomorphism sat-
isfying %g(-,t) = Zizzl vi(9(-, 1), Ei(9(-, 1)), g(x, 0)=x, xe S, minimizing
S22 [0 VAVi(X(©, ¥), )12 sinydydd is given by

1
inf / S v, DK (91) i v, dt
ij

g:9(t)=PZ, vi (g(t).t) Ei (9(t))

2
n Z W=(Yn, g(xn, 1))

The results of computations of spherical deformations are shown in the bottom
row of Figure 8.

Mapping the Cerebral Cortex

To understand individual variations in the cortical topography, the Van Essen group
has been using large deformations to establish correspondences between the cor-
tical maps of various individual cortical surfaces (66, 100, 101). The left column

of Figure 9 shows a surface-based atlas of the macaque visual cortex. The top
panel shows the macaque surface in 3-D and the bottom panel shows the flat
atlas. The right column of Figure 9 shows results from flat mapping transforma-
tions of the macaque. The top row of Figure 10 shows an interspecies compar-
ison via cortical surface deformation between the macaque and visible human
(100).

Landmark Matching Via Other Metric Distances

EUCLIDEAN DISTANCE AND BOOKSTEIN THIN-PLATE SPLINE DISTANCE Euclidean
distance betweehl-shapes inRY measures distance according to straight line
paths between the objects. Choosing the quadratic form to be a constant indepen-
dent of the path, the metric distance becomés, 1{,)?= Zi'}l:j_ (=X (K™Yi;
(—x3).

Bojokstein’s (16, 29, 30) thin-plate spline landmark matching measure approx-
imates the tangent flow of the landmark trajectories by the tangent at the origin.
This is clearly not symmetric, nor does it satisfy the triangle inequality. However,
for small deformations, this is a powerful methodology that approximates the dif-
feomorphic flow metric of Joshi in the tangent space by the metric at the origin.
Assume Green’s operator as tti x dN block matrix K(g(0)) evaluated at the
origin of the flow withd x d blocksK(g(0))ij. The approximate distance reduces

to Iy, 1) = Effat = ) (K(@O) i (%) — X))

KENDALL’S SIMILITUDE INVARIANT DISTANCE Kendall (115) defines the distance
between sets of N-shapes invariant to uniform scale, rotation, and translation. De-
fine the affine similitudes to be matricAs=sO, s (0, o0), O € SQ(n), with their
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action on the shapes, the scale-rotation-translation of each point of the shape:
Al+a=(Ax+4,..., A+ a).. The Kendall invariant distance requires the ma-
tricesK(In) have the property that, for alh( a), K(Aly + a) = AK(I\)A

Theorem 6.2 [Kendall (115)]Defining the mean shape positiongs) = % Z,T:l
g(xn, 1), with K(g(t)) = o%(g(t))id, whereid is the Ndx Nd identity matrix and
o2gM) = 1N, llg(xi, t) — g(t)]12, with po a distance o+ x RY, the geodesic
connecting {, |{; minimizing Zi'\‘:lfol mng—?(xi ,t)|1? dt has distancéproof
in Appendi)

p(In, 18)? = pol(o(9(0)), G(O)), (o (9(1)), G(1)))

N, /g(x.0)~ §(O) g0.1) - gD)\\’
+(amC°S;< o@O) ' o(g) > €9

with Kendall's similitude invariant distance given by

B(In, 1) = inf{p(Aly +a, 1), A similitude a € RY}. (21)

Kendall's distance ih Equation 21 requires computing the minimunp¢$Oly +

a, 1{), fors> 0,0 e SQ(d) anda € R Defining the normalized landmarks by
y(x,t) = 9280 then because the action sainda does not affecy (x;, -);
one can selectthem in order to cancel the distagegthout changing the second
term, implying thap{l, 1) is the minimum of arccoiiN:l(yi(xi, 0),0yi(x, 1))
whenO varies inSQd). Whend=2, there is an explicit solutiop(Tn, 1) =
arcco$ Y\, (1(0, %), 7 (L, x)).

PROBABILISTIC MEASURES OF VARIATION
AND STATISTICAL INFERENCE

For constructing probability measures of anatomical variation the Grenander school
characterizes shape as Gaussian fields indexed over the manifolds on which the vec-
tor fields are defined (1, 2, 64, 118, 118a). Associate with the diffeomorphic maps
g: | — 1’ the vector fields modulo the identity map as a 3-dimensional Gaussian
vector field{U(x), = g(xX) — x, xe M} on the smooth sub-manifold of the full brain
volumeM c X. Expand the Gaussian field using a complete orthonormal basis on
the background spadd; the U-field becomedJ(-) = ", uxy(-), whereuy are
independent Gaussian random variables with fixed means and covariances, and
¥ a complete orthonormal base. Complete orthonormal bases are constructed via
calculation of empirical covariances and their eigenfunctions.

The Csernansky group has been quantifying the variation of the shape of the hip-
pocampus subvolumesin brains viamagnetic resonance imagery (61, 62,119, 120).
CA methods have been used to identify deformations in the shape of the hippocam-
pus that strongly discriminate subjects with schizophrenia from matched controls
(119) and quantify the mildest forms of Alzheimer's Disease (AD) (120). The
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statistical covariation of hippocampus shape from the populations are grouped
into n; controls andn, test cases. The maps are represented viarthectors

of coefficientsU = (uy, . . ., Up)', whereU(X) = > r_; ukyk(X). Wang et al. (121)
have shown that logistic regressions basegéscoring of the groups of coef-
ficients indicate that 3-5 basis functions are sufficient for describing group dif-
ferences TheU1 Uz—vectors are modelled as Gaussian, with empirical means

Ul= n1 Ut U2= Z'j‘z:l U?, and common covariances:
Y= (Y- oy Y 3 - 0902 - 07
ng+ny;—2 =1 I l j=1 : ]

(22)

The hypothesis test of the two group means with unknown but common covariance
for the null hypothesisHo:_ UL = U2, has the Hotelling’sT 2 statistic_given

by T? = - (U' — UTE-LUL — 2)_ The sample meand! andU? are
therefore normally distributed with meabs, U2, and common covananqéZ

with «/Minz/(nz & np)(U L — U2) normally distributed, covarianaunder the null
hypothesis. Following (122, p. 109)(+ n,—2)3. is distributed ag& ™} ™2 X, X!
whereX; is distributed according t8/(0, ). Thus,T? has arF dlstnbutlon, and

the null hypothesig{ is rejected with a significance levelif

(n1-|-n2—2)K *

T nl + n2 _ K 1 FK Np+ny—K-— 1(“) (23)

where F¢ | .,k _1(«) denotes the upper 18@6 point of the Fi nin,—k-1
distribution, and( is the total number of basis functions used in calculating the
T2 statistics. The log-likelihood ratio for hypothesis testing is

1 ~ehinT L —
A=—S(Ui=UEMTY (U - U

1 __Lcrl ~—1 __Lcrl
+5U Uy U - U, (24)

The vector coefficients represent the coefficients for the principal components used
in the study. UndeHo, H; the log-likelihood ratioA (A < 0, > 0, respectively)

has sufficient statistic Gaussian distributed with means varia.d@efg, U, and
variances2, respectively.

Wang et al. (121) have found that scale and volume are not powerful discrim-
inants of group difference in the schizophrenic and normal populations; how-
ever, shape difference is. Figure 11 examines results from AD, normal aging and
schizophrenia. The top row shows the difference of hippocampal surface patterns
between the controls and targets groups (left: AD, middle: normal aging, right:
schizophrenia) visualized asscores on the mean surface.

Joshi showed that Fisher's method of randomization can be used to derive a
distribution-free estimate of the level of significance of the difference. For all per-
mutations of the given two groups, the means and covariances are calculated from
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Monte Carlo simulations generating 10,000 uniformly distributed random per-
mutations. The collection OF 2 statistics from each permutation gives rise to an
empirical distributionF (-) estimatingF(-) in Equation 23 using~« n,+n,—k-1=

n1+n2—K—1T2
(n1+n2—2)K

. The null hypothesis that the two groups have equal means is

rejected wherp= ff.’f F(f)df falls below a predefined significance level. The
Gaussian assumption for the coefficient vectors are valid since the empirical dis-
tribution of theF statistics follows thé--distribution curve.

SUMMARY

This paper reviews recent developments in the formulation of metric spaces for
studying biological shapes in computational anatomy. We expect that such a for-
mulation will provide the fundamental basis for future developments in the quan-

tification of growth and form.
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APPENDIX

Proof of Theorem 3.1:To derive Euler-Lagrange equations for the velocity exam-
ine perturbations on the group elements and velocity figlds,g + en, v — v +

€. For exact correspondence of the group elemeii® = (1) = 0, as depicted

in panel 2 of Figure 1. For inexact image matching, of{)) = 0 with n(x, t) =0,
Yxe X, ¥(x t)=0, Vxe aX. If n is a perturbation of, define theGateaux dif-
ferentialof E(vg) : G — R* in the directiory to be the limit, as the perturbation
tendsto 0. Also ifi is a perturbation of, define theGateaux differentiabf E(g,) :

Y — R in the directiony to be the limit, as the perturbation tends to 0.

Lemma A.1 The variations of the velocity and group element¥ian are given
by

1
Y0 1) = 0,090x, ) = lim = (g (X, ) = 00X, )

d
= a’l(g_l(x, t)’ t) - DUg(Xa t)n(g_l(X’ t)’ t) (25)

1
TI(X, t) = a!//gv(x’ t) = ell_r)no g(gv-‘réiﬁ(xv t) - gU(X7 t))
t
= 0.1 [ Dg.(x.u) (g, (x. U v du (26)
0
Proof of LemmaDefining the notatiox ~y to mean lim_o *=¥ = 0, then
%@+ enx, 1) = uglgx, 1, ) + e n(x, 1)
dt g €n ’ - vg g st/ édtn )
= Vgten(9(X, 1) + en(X, 1), 1) (27)

(;i) vg(g(x, 1), t) + e Dug(a(x, t), t)n(x, t) + €3,vg(a(X, t), 1), (28)

with (a) following from the definition 0B, vy, the total derivative and the(e)
equality. Equating Equations 27 and 28 gives the first result of Equation 25. Equa-
tion 26 follows from the linearity ofy given fixed in Equation 25:

“n(x,1) = Du(gx, 1), n(x, ) + ¥ (g(x, . )

— 2 Dl (DG, ) M, 0+ e ) (29
since
%Dg(x, t) = Du(g(x, t), t)Dg(x, t). (30)

Thenpn in Equation 26 satisfies the derivative Equation 29, completing the proof
of the Lemma.
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Consider the enerdy(vg) defined for all time-dependent diffeomorphispist)

solving ﬂ? =v(g, t). Now evaluating the variation d&(vg) = fol E,, (1) dt with

respect to perturbatiorgs— g+ €n gives
1
% E(vg) = lim ~(E(vges) — E(vg))

@ / V,E(- 1), n(g-l( t),t) — Du(-, n(g (. t), ) dt  (31)

O (VL EC 1), n(g X 1), )

1
_/ <a(|Dg(.,t)|va(g(.,t),t)), ,,(.,t)> dt
0

1

with (a) coming from Equation 25, and (b) the change of variagleg(x, t),

with integration by parts eliminating the time derivativerofThe first term is the
boundary term which is zero for exact matching. This gives the terms in the inner
product forming the Euler-Lagrange functional variation:

_%(vv E(g(xv t), t)' Dg(X, t)|) - (DU(g(X, t)v t))tvv E(g(X, t), t)' Dg(X, t)|
(33)

( 35+ ) @x. .01 Pg(x. B - (DY, EXglx. . Du(alx, . 0IDG(x. 1)

- 5009 IDg(x, )NV, E(g(x. 1), )IDG(X, )|
— (Du(g(x. 1). 1))' V., E(g(x. 1), )| Dg(x. 1)|. (34)

Now the identity for the derivative of the log-determinant is given byAog ¢B| =
log|A| + € traceA~!B + o(¢), and the time derivative of the Jacobiﬁrﬁ)g(x, t)is
given by Equation 30 so that

% log |Dg(x, t)| = trace (Dg(x. ) *Du(g(x, t), ) DY(x, t))
= traceDuv(g(x, t), t) = divv(g(x, t), t). (35)

Substituting along withy=g(x, t) into Equation 34 gives the Euler-Lagrange
equation (Equation 4) completing the first part of the proof.

Proof of Theorem 3.3: Define the energ¥(g,, J) = fo(||v(t) 12 + || (t) +

Vv JY(t)v(t) |?) dt . This has to be minimized jointly inandJ. The grad|ent in is
given byV,E = 2L"Lv 4+ 2(2 J(t) + VJ'(t)v(t))VI(t). The nonboundary term

for the perturbation is identical to the above, giving Equation 4. The boundary
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condition att=1 applies sincey(1) is free at the endpoint, so the value of the
perturbatiom(-, 1) is nonzero, and the boundary term must be taken into account
from Equation 32, givingV, E(1), n(g*(1), 1)) = 0 so thatv,E(1) = 0. The vari-

ation inJ follows by introducingZ = % + VJ, and computing the perturbation

by ¢ with v fixed:

lim E(gv’ J + 6¢) - E(gvv ‘])

e—0 €

1 B
= 2/0 <Z(t), §¢>(t) + V¢t(t)v(t)>dt

1 9 1
- fo <az“)’ ¢(t)>dt— 2 /0 (V(Z(t(®). $1)) dt.

Proof of Inexact Image Matching Theorem 4.1:To compute the boundary term
Equation 11 which holds for inexact matching at the endpoint, the variation
of the inverse map,g -1 in a perturbation is required:

y=(g+en(@+en)H(y. t).1)
~ g((9+en) MY, ). t) +en((g+em) Xy 1), 1)
=y + Dg(g (y: )G+ em) 1y, t) — g7 (y, 1)) + en(g ™ (y, 1), ),
implying

lim %((g +en (. 1) — g7y, 1) 2 —DgHy, On(g My 1.1, (36)

with (a) fromDg; 1(y, t) = (Dg,(g; *(y, t),t)) L. The variation of the second match-
ing term becomes

Al — lo(@ HII? = =211 — lo(g™ (1)), VI§(g~(1))3,97 (1)), @37)
@ 211 — 1o(g™X (D)), VIS (g 1)Dg  (Ln(g (1), 1)), (38)
© 2011 — 1o(g™HL)D (g™ D)), n(g™(L), 1)), (39)

with (a) using Equation 36 and (b) collecting terB@o (g~(y, 1)))= V1§ (g7X(y,
1)) Dg(y, 1). Att =1 withg~%(1) free the boundary term Equation 32 is nonzero;
adding it to Equation 39 gives Equation 11.

Proof of Space-Time Growth Theorem 4.2Substitution ofy = g(x, t) in Equa-
tion 34 gives the variation of thip(t)||? to be:

1
- / <%VUEU(.,0+(Dv(~,t))tvav(.,t)+(Dquv(~,t»v(-,t)
0

+divo(, 1)V, E,(, 1), n(g_l(t),t)>dt. (40)
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The variation of the second term under the perturbatiog by n follows from
using Equation 36:

1
—2 [ {030 = ofa™ 0. V1@~ 0N 07 0] ot (@1)
1
=2 [ (010~ 1olg (.1, V1i(g 0)PgHOn(@ 0. D)t (32)

1
@2 fo ((12(t) = 1o(@™*(t))D(lo(g M ()))", m(g~ (1), 1)) dt, (43)

with (a) writing D(lo(g~%(t))) = V15(g~%(t))Dg~L(t). Collecting the two compo-
nents of the gradient term from Equations 40 and 43 gives the proof.

Proof of Theorem 6.2 Define normalized landmarkg (x,, t)= %’@?‘t),
g%, ) =0 (9(t)) ¥ (%, t) + g(t), then

do (g( ) dg

—( 1) = v t)+o (g(t)) (Xn,t)+ (44)

implying ;' 122912, dt equals

) 1 (do(@®))’

5 (L i (" )
' 1 dg .

+/o gy dt I /0

t_ 1 do(g(t) dy(xn,t) 1 dg()
+2/0 o) dt Y (Xn, 1) +2/ U(g(t))z—y( o 1) dt

Lol Qdy(xa, t)
vz i e ‘“)

@ (1 1 (do(gt))> 11 dg?
‘/ oZ(g(t»< dt ) dt+N/o 2(gm) dt "

/(;nl

with (a) following from|y (t)||2 =1, implying the 4th term(%ny(t)n2 = 0, the
5th term has mean zero, and the final term is the derivative of the mean, which
is zero. Denote byg((a(g(0)), 9(0)), (e(g(1)), g(1)))? the minimum of the first
two terms; the minimum of the last term can be explicitly computed (because
(¥ (-y %), - .., ¥ (-, Xn)) and belongs to a sphere of dimenshr- 2 and is given by

dy

1)

_(Xn

(45)
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the length of the great circle in the sphere which connects the extremities of the
path, namely (arccds N, (1 (0, Xn), ¥ (L, Xn)))? SO,

p(In. 10)? = po((e(9(0)). 9(0)). (o(9(1)). G(1)))?
N 2
+ (arccos (¥(0, %), ¥(1, Xn))R") ~ (46)

n=1
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Figure 9 Two columns show the Van Essen surface-based atlas of macaque visual
cortex. Left column shows the macaque attap fow) and flattened versiorbfttom
row). PanelA shows the flat map. Shading indicates cortical geography, black lines
indicate the landmark contours used to constrain the deformation (along sulcal fundi
and along the map perimeter). PaBahows the pattern of grid lines after deformation
into register with the target atlas map in pabelPanelC shows the vector field for
selected grid points (at intervals of 10 map-mm). Arrow bases indicate grid positions
in the source map, and arrow tips indicate the location of grid points in the deformed
source map. Pan@® shows the map of geographghading and target registration
contours Black lineg on the atlas map. Panklshows contours from the deformed
source maplflack lines. Results from (100).

Figure 10 (Top row) Panel 1 shows 3-D Visible Human Male, panel 2 shows the land-
marks on macaque flat maps, panel 3 shows the landmarks on the human flat maps, and
panel 4 shows the boundaries of deformed macaque visual ateels{neg superim-

posed on the fMRI activation pattern from an attentional task from Corbetta et al. (117)
after deformation to the Visible Man atla8dttom rowy Panel 5 shows the spherical

map of the macaque visual cortex. Panel 6 shows the spherical map of the deformed
macaque visual areas, along with the deformed latitude and longitude isocontours.
Panel 7 shows the deformed macaque visual areas with the latitude and longitude lines
of the Visible Human spherical map. Results taken from Van Essen et al. (100).
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