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ABSTRACT

Our work has focused on deformable template representations of geometric variability in automatic target recog-
nition (ATR). Within this framework we have proposed the generation of conditional mean estimates of pose of
ground-based targets remotely sensed via forward-looking infrared radar (FLIR) systems. Using the rotation group
parameterization of the orientation space and a Bayesian estimation framework, conditional mean estimators are
de�ned on the rotation group with minimum mean squared error (MMSE) performance bounds calculated following
[1]. This paper focuses on the accommodation of thermodynamic variation. Our new approach relaxes assumptions
of the target's underlying thermodynamic state, expanding thermodynamic state as a scalar �eld. Estimation within
the deformable template setting poses geometric and thermodynamic variation as a joint inference. MMSE pose esti-
mators for geometric variation are derived, demonstrating the \cost" of accommodating thermodynamic variability.
Performance is quantitatively examined, and simulations are presented.

KEYWORDS: Lie Groups, Automatic Target Recognition (ATR), Conditional Mean Estimation, Monte Carlo
Random Sampling

1. INTRODUCTION

Forward-Looking Infrared Radar (FLIR) systems are high resolution imaging sensors with resolution that is suit-
able for object recognition in numerous military applications. To exploit this sensor's capabilities in the Automatic
Target Recognition (ATR) problem, image understanding algorithms are required to interpret remote FLIR observa-
tions of complex scenes. In this context, the targets under consideration are rigid body objects and the parameters
of primary interest are target number, class, location, and orientation. Our group has previously presented an ap-
proach based on deformable templates for the ATR problem for representing the geometric variations of orientation,
position, and scale, whose aim is a joint solution to the object detection, tracking, and recognition problems for video
imagery [2, 3, 4, 5].

A major obstacle to the development of such deformable template representations for FLIR imagery is that the
geometric variation in the appearance of a target at a given pose is only one of the principal sources of variability
of the target signature. The second principal source of variation in target appearance is variation in the target's
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Figure 1: In the left panel a CAD model is shown as an example template illustrating the lattice we use to describe the
target's thermodynamic state. On the right, a FLIR observation of a T62 tank generated by PRISM demonstrating
the vector �eld on the surface of the tank.

thermodynamic state. For this, we propose the use of deformable templates extended to describe target thermody-
namic state. In previous work, we have shown such representation to yield accurate low dimensional thermodynamic
descriptions [6]. In this paper, the extended templates are applied to pose estimation problems, with minimum
mean squared error (MMSE) performance computed demonstrating the accuracy with which the representations
accommodate thermodynamic variability.

2. DEFORMABLE TEMPLATE REPRESENTATIONS FOR ATR

We have been developing probabilistic representations in terms of a pattern theoretic formalism [7] for the
inference and recognition of rigid and deformable objects in image understanding tasks. Objects are represented
using templates; their in�nite variety of shape is represented via transformations which act on the templates. In the
context of ATR involving rigid objects, the transformations form groups; a deformable template is then the orbit under
a group action, generally the Euclidean group, it's subgroups, and products. Estimation becomes identi�cation of the
group action and target type, requiring matching the observed remotely sensed image with the particular instance
of the template.

2.1 Representing Geometric Variation Via Deformable Templates

Using the pattern theoretic framework for ATR (see [5], for example), scenes consist of targets of type � 2 A,
where A denotes an alphabet of possible targets, each with an associated parameter vector s 2 S the group of
transformations describing position and orientation. In the context of rigid body ATR, a template is constructed
corresponding to CAD representations of the 2-dimensional surface manifolds of the rigid objects. Denote such an
ideal template as Itemp � fItemp(x); x 2 Xg, X the space indexing location in the target. Shown in the left panel of
Figure 1 is a CAD model de�ning the rigid template.

Geometric variation due to variability of pose of the targets are introduced via the rigid motions of translation
and rotation. The set of transformations S are Lie group actions on the templates. For ground-based scenes,
we use the special orthogonal group of 2 � 2 rotation matrices, SO(2), and translations in the plane, IR2. The
transformations are of the form, s = (O; a), O 2 SO(2), and a 2 IR2 a position vector. Then s 2 S � SE(2), the
Special Euclidean Group. SE(2) � SO(2)n IR2, where n here denotes the semi-direct product [8], with S : X $ X
according to sx 7! Ox + a. The entire deformable template over which inference occurs is the orbit under SE(2);
I � fItemp(Ox + a) : (O; a) 2 SE(2)g, with elements I(O; a) � fItemp(Ox + a) : x 2 Xg. Estimation of an element
of the orbit I(O; a) 2 I is estimation of its parametric representation (O; a) 2 SE(2)

2.2 Extending Deformable Templates To Represent Thermodynamic State

FLIR systems passively sense objects via their re
ected or emitted infrared radiation. Unlike the video imaging
systems described in [2, 3, 4], FLIR observations of a target vary dramatically with changes in the target's thermo-
dynamic state. Estimation of the thermodynamic state of a target is fundamental to the estimation of the target's



type, position, and pose, given FLIR observations. Hence, understanding FLIR observations of a target entails the
representation of thermodynamic variation, within our existing framework. Our group has previously presented
jump-di�usion algorithms for the automated understanding of FLIR scenes [9, 10]. In that work, the thermodynamic
state of the target was assumed known and constant. That approach requires the use of image libraries of templates
at di�erent thermodynamic states and target poses.

A complete description of the thermodynamic state of a target speci�es the emitted radiance as a function of
position on the surface of the rigid target. This surface can be decomposed into regions consisting of polygonal facets
constituting a CAD model representation of the surface. This is the case in the models describing the geometry of
the surface that are used by PRISM [11], the FLIR simulation software used by our group. The thermodynamic state
is then described by a vector whose elements are the radiance at the lattice points de�ned by the template (CAD
model). De�ne T � fT (l) : l 2 Lg to be the thermodynamic state, de�ned as the radiant intensity indexed over the
surface lattice L given by the CAD model for the target with dimensionality jLj = L. To extend the deformable
template to accommodate thermodynamic variability, the template becomes I, the set of all targets generated
under the group action with superimposed scalar thermodynamic �eld T . We denote an element by I(O; a; T ) 2 I,
I � fItemp(Ox + a; T ) : (O; a; T ) 2 Sg. To illustrate, shown in the right panel of Figure 1 is the template rotated
90o with the scalar �eld representing thermodynamic state. Vectors are drawn normal to the surface at the various
lattice sites with length proportional to the region's radiance in (Watts/Steradian-meter2).

2.3 Expanding Thermodynamic Information as Scalar Fields Via Principal Components Analysis

Introducing thermodynamic state increases the dimensionality of the parameterization from 2 (SE(2)) to L+ 2.
We want to reduce the dimensionality of the representation of thermodynamic state, L, to simplify the inference
problem. For this we follow [6], where we de�ned the radiant intensity to be a scalar random �eld T = fT (l) : l 2 Lg,
where L is the surface lattice indexing the CAD model for the target with dimensionality jLj = L. Typically, L is
several hundred, resulting in a considerable increase in dimensionality. We model T as a random �eld on the lattice
with covarianceK, whereKij = Ef(T (i)� �T (i))(T (j)� �T (j))g, �T is the mean thermodynamic pro�le of the database,
and K is an L� L matrix. In the study of neuro-anatomical sub-manifolds [12], principal components analysis was
established for random �elds on surfaces. Following Joshi, et al., [12], we apply Eigen-expansion techniques to the
covariance to derive a basis representing thermodynamic variability. We represent the scalar �eld using a complete
orthonormal basis f�ig. The �i are chosen as the Eigenvectors of the empirical covarianceK weighted by the surface
measure �, satisfying K��i = �i�i (see Cooper, et al., [6]). Then T = �T +

P
�i�i, where the coe�cients f�ig are

given by �i =< (T � �T );�i >.
We present principal thermodynamic Eigenpro�les for three databases. Databases were constructed to isolate two

primary modes of thermodynamic variation: meteorological and operational variability. Meteorological variation,
resulting from changes in the weather or atmospheric conditions, was isolated in the \static" database. Operational
variation resulting from changes in the operational state of the target, such as the speed of the tank, whether the
motor is on or o�, how long the motor has been on, whether the main gun is �ring or not, etc., was isolated in the
\dynamic" database. A third, \composite" database was generated containing both of the previous two. Details
regarding database construction may be found in [6].

Intuitive conclusions may be drawn from the plots and renderings of the �rst thermodynamic Eigen-pro�les (�rst
thermodynamic principal components) from the three databases, shown in Figure 2. The variation expressed in the
�rst thermodynamic Eigen-pro�le of the static database demonstrates uniform heating of the tank as the sun moves
across the sky during the twelve hour simulations. The variation represented by the �rst Eigen-pro�le of the dynamic
database demonstrates the intense heating of the exhaust system of the tank as the motor runs at di�erent speeds.

We use the empirical covariances of databases of radiance pro�les over the target surface to characterize the
thermodynamic variation, as observed by the FLIR sensor. Performing an Eigen-expansion of the empirical co-
variance matrix is equivalent to the classical statistical technique of principal components analysis [13]. Hence the
�i are the thermodynamic principal components. The plots of the power spectrum of the Eigenbasis representing
thermodynamic state (left panel), and the mean squared error (right panel) in Figure 3 indicate that truncated
Eigen-expansions yield accurate representations. We then expand the template using the coe�cients of a trun-
cated Eigen-expansion rather than the full L dimensional representation for thermodynamic state. In this way, the
templates' low-dimensionality is preserved, now accommodating the in�nity of both geometric and thermodynamic
variations of targets in FLIR observations. If N terms are retained in the truncated Eigen-expansion, the deformable
template with reduced parameterization becomes I � fItemp(Ox + a; ��) : (s; ��) 2 S � IRNg. Here, �� = [�1 � � ��N ],
where T = �T +

P
�i�i. From Figure 3, 10 � N � 20 appears to be su�cient for accurate representation of thermo-
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Figure 2: Visualizations of the �rst thermodynamic Eigen-pro�le given by the �rst principal component �1(l); l 2 L
from three databases: the top row shows the radiant intensities plotted versus lattice site index, and the bottom
row shows the �rst principal thermodynamic pro�les rendered by the SGI. From left to right, the �rst principal
thermodynamic representing meteorological, operational, and composite modes of variation, respectively.

dynamic state. This represents a signi�cant reduction in the dimensionality of the templates as CAD templates are
routinely comprised of several thousand vertices and facets, and several hundred regions.

3. PERFORMANCE ANALYSIS FOR POSE ESTIMATION

Within the deformable template representation, performance bounds may be evaluated in the familiar sense of
minimum mean squared error (MMSE) bounds for the expected variance of parameter estimators. We will review
the derivation of these bounds, presented in [14], for the ground based target pose estimation problem given target
class and position.

3.1 Minimum Mean Squared Error Estimators

Parameterize the set of possible orientations of the target(s) being considered by rotation matrices in SO(2).

Select as an error metric the Hilbert-Schmidt (HS) norm: for SO(N), kXkHS =
PN

i;j=1 x
2
ij . In SO(N) then,

kX2 �X1k
2
HS = 2(N � Tr(X2X

t
1)). Here the superscript t denotes the matrix transpose and the operation Tr(�) is

the matrix trace. For N = 2, the matrices of SO(2) take the form:

O� =

�
cos(�) � sin(�)
sin(�) cos(�)

�
:

The HS norm squared of the di�erence between rotation matrices corresponding to the angles �2 and �1, O2 and O1,
respectively is kO2 �O1k

2
HS = 4� 4Cos(�2 � �1) .

The principal di�culty addressed in [14] is the evaluation of estimators taking values on non-
at spaces, such as
matrix Lie groups, including the special orthogonal groups. Summarizing that work, the MMSE estimator is de�ned
as follows:

O�
HS(I

D) = ArgMin
O2SO(2)

EfkO � Ôk2HS jI
Dg: (1)

The expected squared error of this estimator then represents a lower bound, where error is measured via the HS norm.
Given an observation of our target, ID, we may evaluate the posterior distribution of the orientation conditioned on
the observation. Using Bayes' rule, the posterior density �(OjID) is given by the product of the data likelihood, and
the prior density on target orientation:

�(OjID) / P (IDjO)P (O): (2)
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) of the Eigen-basis representing FLIR

variability is shown. On the right appears the squared error versus the number of terms used in the Eigen-expansion,
averaged over three databases.

Assuming a uniform prior, as proved in [14], the MMSE estimate is:

O�
HS(I

D) = ArgMin
O2SO(2)

f

Z
SO(2)

kO � Ôk2HS�(ÔjI
D)
(dÔ)g; (3)

= ArgMin
O2SO(2)

f4� 2

Z
SO(2)

Tr(OÔt)�(ÔjID)
(dÔ)g; (4)

= ArgMax
O2SO(2)

Tr(OAt); where A =

Z
SO(2)

Ô�(ÔjID)
(dÔ) ; (5)

=
1

jAj
A: (6)

Here, j � j denotes the matrix determinant. Hence, estimation is reduced to computing O�
HS(I

D) as in Equation 6.
The HS error (HSE) is then given by

HSE(OT ) = 4� 2Tr(OT (O
�
HS(I

D))t) = 4�
2

jAj
Tr(OTA

t): (7)

Here OT is the true underlying target orientation. The HSE is a function of OT , thus it is the conditional error with
respect to the HS norm for the given estimation experiment.

The mean squared error is the expected squared error over the joint parameter space, ID � SO(2), where ID

is the space of possible observations. The MSE is computed as in Equation 8, in which the MSE is de�ned for an
arbitrary estimator O�:

MSE =

Z
SO(2)

Z
ID
kO�(ID)�Ok2HSP (O; I

D)
ID (dI
D)
(dO): (8)

Equivalently,

MSE =

Z
SO(2)

Z
ID
kO�(ID)�Ok2HSP (I

DjO)
ID (dI
D)P (O)
(dO): (9)

The MSE conditioned on the underlying target orientation, OT , is then given by the inner integral of Equation 9:

MSE(OT ) =

Z
ID
kO�(ID)�Ok2HSP (I

DjOT )
ID(dI
D) =

Z
ID

[4�
2

jAj
Tr(OTA

t)]P (IDjOT )
ID(dI
D):

(10)



Figure 4: Here the T62 tank is displayed in four thermodynamic states. In the top row: pro�le 140 on the left
and pro�le 75 on the right. In the bottom row: pro�le 45 on the left and pro�le 8 on the right. These di�ering
thermodynamic states are used to quantify performance variation due to inaccurate thermodynamic information.

The second equality is given by substituting the HS estimator for O�. The MSE is evaluated using numerical
approximations to the integral over SO(2) (concealed in A, Equation 5) and Monte Carlo random sampling to
compute the expectation over the space of possible observations, ID . Thus, the MSE is computed in a speci�c noise
environment speci�ed by the noise standard deviation, � in the case of Gaussian noise, or more generally the signal
to noise ratio, according to

MSE�(OT ) =
1

N

NX
i=1

kO�
HS(I

D
i (�)) �OT k

2
HS =

1

N

NX
i=1

[4�
2

jAi(�)j
Tr(OTA

t
i(�))]: (11)

Here, Ai(�) represents the average matrix computed using Equation 6 given the ith observation of a set of N
observations, fIDi (�)g � ID, in which the noise environment is parameterized by �.

To evaluate the posterior density �(OjID), images of the target are simulated with known thermodynamic state
and a sampling of orientations O = fOi : i = 1 � � �Mg � SO(2), These are stored in a database. The likelihood of the
data conditioned on true orientation Oi is evaluated using the observation and the corresponding database image.
Equation 2 is then applied to give �(OijI

D). �(OijI
D) is computed for each Oi 2 O and normalized appropriately.

The A matrix is then empirically computed per Equation 5. The HS estimate and the HSE are evaluated. This
procedure is repeated for a number of realizations of the noise process for a speci�c value of � to empirically
approximate the conditional MSE, as in Equation 11. Results using FLIR sensors in Gaussian noise environments
are shown in Figure 5. In the simulations presented throughout this paper, only orientations in the interval [0; �2 ) are
considered, so that target symmetry e�ects may be ignored (see [1]). In the left panel, the conditional mean squared
error (MSE(30)) is plotted versus noise standard deviation for orientation estimation of the T62 tank, conditioned
on an underlying orientation of 30o. The curves were generated using observations of the tank at the same pose
with the underlying thermodynamic pro�les of Figure 4. The databases corresponding to the thermodynamic state
of the observation are then used to calculate performance curves. Notice the performance variation due to the
thermodynamic variability.

To this point we have assumed that the target's thermodynamic pro�le is known and constant. Relaxing this
assumption, the performance loss incurred by assuming incorrect thermodynamic information may be quanti�ed.
Working with the set of thermodynamic pro�les shown in Figure 4, noisy FLIR observations are generated using
thermodynamic Pro�le 140. Databases are generated for the set of orientations O assuming the true thermodynamic
state and the two additional target thermodynamic pro�les shown in Figure 4: Pro�le 75 and Pro�le 45. Perfor-
mance curves are computed using each database, conditioned on a true target orientation of 30o. In the latter two



cases, the observation and the database images compared via the data likelihood assume di�erent underlying target
thermodynamic pro�les. Resulting performance losses are quanti�ed by the curves shown in the right panel of Figure
5. Performance given correct thermodynamic information corresponds to the curve labeled \Database 140". The
mismatched curves demonstrate performance dependence on accurate thermodynamic information.
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Figure 5: In the left panel, the plot of MSE versus noise standard deviation for orientation estimation of a T62 tank
is shown. The plot shows performance variations due to changes in the underlying thermodynamic pro�le of the
target. In the right panel, performance curves appear in which the underlying thermodynamic pro�le of the observed
target is given by Pro�le 140, while the estimation algorithms assume Pro�les 140, 45, and 75. Performance losses
are observed in the mismatched cases.

The unconditional MSE may be evaluated by evaluating the outer expectation of Equation 9 over SO(2). The
unconditional MSE is evaluated as:

MSE = EfEfkOT �O�
HSk

2
HS jOT gg: (12)

Assuming a uniform prior on the underlying target orientation OT , the MSE maybe calculated empirically by
averaging the conditional MSE over O:

MSE =
1

M

MX
i=1

MSE(Oi): (13)

A plot of the MSE appears in Figure 6.

4. PERFORMANCE ANALYSIS & POSE ESTIMATION ACCOMMODATING

THERMODYNAMIC VARIABILITY

The pose estimation experiment has been performed employing the representation for thermodynamic variation
expanding thermodynamic state via the thermodynamic Eigenbasis, relaxing assumptions regarding the target's
thermodynamic state. In this case, the joint posterior is evaluated over the parameter space of Section 2.3, SO(2)�
IRN .

�(OjID) =

Z
IR20

�(O; ��jID)
��(d��) (14)

The target's thermodynamic state is represented by a vector of coe�cients, which are the projections of the thermo-
dynamic pro�le on to the basis of thermodynamic Eigen pro�les. This vector is denoted ��, where T = �T +

P
�i�i.

Here,the �rst twenty terms of the generalized Karhunen-Loeve expansion are retained, i.e. N = 20; �� 2 IR20. The
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Figure 6: The unconditional MSE with respect to the HS norm for the ground-based pose estimation experiment
is plotted versus noise standard deviation. It is evaluated by empirically averaging the conditional MSE given the
underlying target orientation over the space of target orientations.

joint posterior �(O; ��jID) is given by Bayes' rule as the product of the joint data likelihood, P (ID jO; ��) and the
joint prior on the target orientation and thermodynamic state, P (O; ��). We make two remarks on the joint prior.
First, the target's pose and thermodynamic state are assumed independent, considering a single observation. Second,
the generalized Karhunen-Loeve expansion used to generate the Eigenbasis of the target's possible thermodynamic
pro�les implies a prior on the vector ��. Modeling the thermodynamic state as a Gaussian random �eld, the coe�-
cients of the target's Eigenbasis representation, �i, are independent Gaussian random variables with zero mean and
variance equal to �2i , where �i is the Eigenvalue of the i

th thermodynamic Eigenpro�le. Assuming a uniform prior
on target orientation:

�(OjID) =
1

Z

Z
IR20

P (IDjO; ��)P (��)
��(d��): (15)

Z is the appropriate normalizer for the posterior. Monte Carlo random sampling in the space of possible thermody-
namic states is used to evaluate this integral. Thus the estimation algorithm uses randomly sampled thermodynamic
information, weighted by the prior P (��), in place of assuming a target thermodynamic pro�le a priori.

We have arrived at a means of evaluating the posterior density of our parameter of interest, �(OjID), without
assumptions regarding the target's thermodynamic state. This new expression for �(OjID) may be inserted into
Equation 5 for the HS estimator, and the HSB and performance curves are calculated as before in Equations 10 and
11:

O�
HS(I

D) =
1

Z

Z
SO(2)

Ô

Z
IR20

P (IDjO; ��)P (��)
��(d��)
(dÔ): (16)

In Figure 7, the performance of the pose estimators with correct and randomly sampled thermodynamic infor-
mation is compared. In these simulations, the underlying thermodynamic state of the tank is given by Pro�le 8 of
Figure 4. The Y-Axis represents the conditional MSE given an underlying target orientation of 30o. The curves la-
beled \Ideal Performance" correspond to ideal performance with correct thermodynamic information, and the curves
labeled \Randomized Performance" correspond to performance using the random sampling approach, without as-
sumption of the target thermodynamic pro�le. The di�erence between these two curves represents the \cost" of
knowledge of the target's thermodynamic pro�le, in the context of the estimation problem.

In Figure 8, the performance of the new estimators, accommodating thermodynamic variation, is compared with
the performance of estimators with incorrect thermodynamic information, similar to those in the right panel of Figure
5. In these simulations, the observations were created using Pro�le 8 of Figure 4. In the left panel, the performance of
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Figure 7: The performance of pose estimators with correct and randomly sampled thermodynamic information. The
curve labeled \Ideal Performance" corresponds to ideal performance, and the curve labeled \Randomized Perfor-
mance" corresponds to the performance of the estimator using randomly sampled thermodynamic information. In
the left panel, MSE given by the HS norm squared is plotted versus increasing noise standard deviation. In the right
panel, estimation error is plotted in degrees versus the noise standard deviation.

our new estimator, labeled \Random" is compared to ideal performance, \Database 8", and two curves corresponding
to performance assuming two incorrect thermodynamic pro�les shown in Figure 5, \Database 45" and \Database
75". The random sampling approach outperforms the non-randomized estimators with incorrect thermodynamic
information. The estimator with correct known thermodynamic information performs most optimally. Plots for
a second set of these simulations is shown in the right panel of Figure 8. In this case, the true thermodynamic
pro�le is Pro�le 140 of Figure 4, and performance of the new conditional mean estimator, without assumption of
thermodynamic state, is almost identical to that of the estimator with correct thermodynamic information.

5. ORIENTATION ESTIMATION ACCOMMODATING THERMODYNAMIC VARIATION

To apply the expanded template representations, a ground-based scene is considered and the goal is the estimation
of the orientation of a target of known class at a known position using a noisy FLIR observation. The target's
orientation is described by a single rotation O 2 SO(2). To illustrate the application of the extended template
I(a;O; ��), we examined the maximum a posteriori (MAP) estimator on sample data. The �rst 20 terms of the
Eigen-expansion are retained, thus the thermodynamic state will be given by a vector of coe�cients, �� 2 IR20. The
approach is to maximize the posterior probability over the joint parameter space, SO(2) � IR20. We perform the
maximization via gradient descent using numerical approximations to the derivative of the joint posterior [15].

The observations are generated by PRISM. In addition, the e�ects of both charge-coupled device (CCD) camera
photocounting noise, modeled as Poisson noise, and a Gaussian camera pointspread function are also incorporated
[16]. Furthermore, dead and saturated pixels are added to the observation. Two observations appear in the left column
of Figure 9 . The algorithm is initialized using an exemplar thermodynamic state and an arbitrary orientation, as
seen in the middle column of Figure 9 for the experiments. The �nal MAP estimates produced by the algorithm
appear in the right column of Figure 9, and in both trials, the target orientation is correctly estimated.

6. CONCLUSION

In this paper, a low dimensional representation accommodating the in�nite variations of pose and thermodynamic
state of targets observed via FLIR sensors has been presented. Performance analysis, facilitated by the model-based
Bayesian formulation of the ATR problem, has been presented. Conditional mean estimators for ground-based
target pose estimation problems have been reviewed using the Lie group pose parameterization. Thermodynamic
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Figure 8: The performance of pose estimators with with correct, randomly sampled, and incorrect thermodynamic
information. In both panels, the performance of the estimator with randomly sampled thermodynamic information,
labeled \RANDOM", is compared to the ideal performance, given by \Database 8" in the left panel, and by \Database
140" in the right panel. Also shown are curves corresponding to performance given incorrect assumptions of the
target's thermodynamic state: \Database 45" and \Database 75".

information has been incorporated into this development, and estimators using the extended template have been
derived. Simulations using Monte Carlo random sampling have been presented to quantitatively asses the impact
of both thermodynamic variability and the extended template representation of thermodynamic state in the pose
estimation scenario. Finally, a MAP estimation example was presented in which the target pose and thermodynamic
state were jointly estimated.

Results presented throughout this paper have repeatedly demonstrated the intrinsic association of accurate ther-
modynamic representations to image understanding with FLIR systems in the ATR context. Performance in the pose
estimation problem is seen to depend on accurate thermodynamic representation, and the random sampling approach
in this scenario has been shown to yield high performance without a priori assumptions of the underlying target
thermodynamic state. In the MAP estimation examples presented, the joint estimation approach again exploits this
relationship e�ectively.
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